
CHAPTER 2

Elliptic Curves

In this chapter we’re going to learn about elliptic curves. In Chapter 3, we will com‐
bine elliptic curves with finite fields to make elliptic curve cryptography.

Like finite fields, elliptic curves can look intimidating if you haven’t seen them before.
But again, the actual math isn’t very difficult. Most of what you need to know about
elliptic curves could have been taught to you after algebra. In this chapter, we’ll
explore what these curves are and what we can do with them.

Definition
Elliptic curves are like many equations you’ve seen since pre-algebra. They have y on
one side and x on the other, in some form. elliptic curves have a form like this:

y2 = x3 + ax + b

You’ve worked with other equations that look similar. For example, you probably
learned the linear equation back in pre-algebra:

y = mx + b

You may even remember that m here has the name slope and b is the y-intercept. You
can also graph linear equations, as shown in Figure 2-1.
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Figure 2-1. Linear equation

Similarly, you’re probably familiar with the quadratic equation and its graph
(Figure 2-2):

y = ax2 + bx + c

And sometime around algebra, you did even higher orders of x—something called
the cubic equation and its graph (Figure 2-3):

y = ax3 + bx2 + cx + d
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Figure 2-2. Quadratic equation

Figure 2-3. Cubic equation
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An elliptic curve isn’t all that different:

y2 = x3 + ax + b

The only real difference between the elliptic curve and the cubic curve in Figure 2-3
is the y2 term on the left side. This has the effect of making the graph symmetric over
the x-axis, as shown in Figure 2-4.

Figure 2-4. Continuous elliptic curve
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The elliptic curve is also less steep than the cubic curve. Again, this is because of the
y2 term on the left side. At times, the curve may even be disjoint, as in Figure 2-5.

Figure 2-5. Disjoint elliptic curve
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If it helps, an elliptic curve can be thought of as taking a cubic equation graph
(Figure 2-6), flattening out the part above the x-axis (Figure 2-7), and then mirroring
that part below the x-axis (Figure 2-8).

Figure 2-6. Step 1: A cubic equation
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Figure 2-7. Step 2: Stretched cubic equation

Figure 2-8. Step 3: Reflected over the x-axis

Specifically, the elliptic curve used in Bitcoin is called secp256k1 and it uses this par‐
ticular equation:

y2 = x3 + 7

The canonical form is y2 = x3 + ax + b, so the curve is defined by the constants a = 0,
b = 7. It looks like Figure 2-9.
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Figure 2-9. secp256k1 curve

Coding Elliptic Curves in Python
For a variety of reasons that will be made clear later, we are not interested in the curve
itself, but specific points on the curve. For example, in the curve y2 = x3 + 5x + 7, we
are interested in the coordinate (–1,1). We are thus going to define the class Point to
be a point on a specific curve. The curve has the form y2 = x3 + ax + b, so we can
define the curve with just the two numbers a and b:

class Point:

    def __init__(self, x, y, a, b):
        self.a = a
        self.b = b
        self.x = x
        self.y = y
        if self.y**2 != self.x**3 + a * x + b:  
            raise ValueError('({}, {}) is not on the curve'.format(x, y))

    def __eq__(self, other):  
        return self.x == other.x and self.y == other.y \
            and self.a == other.a and self.b == other.b
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We check here that the point is actually on the curve.

Points are equal if and only if they are on the same curve and have the same
coordinates.

We can now create Point objects, and we will get an error if the point is not on the
curve:

>>> from ecc import Point
>>> p1 = Point(-1, -1, 5, 7)
>>> p2 = Point(-1, -2, 5, 7)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "ecc.py", line 143, in __init__
    raise ValueError('({}, {}) is not on the curve'.format(self.x, self.y))
ValueError: (-1, -2) is not on the curve

In other words, __init__ will raise an exception when the point is not on the curve.

Exercise 1
Determine which of these points are on the curve y2 = x3 + 5x + 7:

(2,4), (–1,–1), (18,77), (5,7)

Exercise 2
Write the __ne__ method for Point.

Point Addition
Elliptic curves are useful because of something called point addition. Point addition is
where we can do an operation on two of the points on the curve and get a third point,
also on the curve. This is called addition because the operation has a lot of the intu‐
itions we associate with the mathematical operation of addition. For example, point
addition is commutative. That is, adding point A to point B is the same as adding
point B to point A.

The way we define point addition is as follows. It turns out that for every elliptic
curve, a line will intersect it at either one point (Figure 2-10) or three points
(Figure 2-11), except in a couple of special cases.
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Figure 2-10. Line intersects at only one point

Figure 2-11. Line intersects at three points
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The two exceptions are when a line is exactly vertical (Figure 2-12) and when a line is
tangent to the curve (Figure 2-13).

Figure 2-12. Line intersects at two points because it’s vertical

Figure 2-13. Line intersects at two points because it’s tangent to the curve

We will come back to these two cases later.

We can define point addition using the fact that lines intersect one or three times with
the elliptic curve. Two points define a line, so since that line must intersect the curve
one more time, that third point reflected over the x-axis is the result of the point
addition.
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So, for any two points P1 = (x1,y1) and P2 = (x2,y2), we get P1 + P2 as follows:

• Find the point intersecting the elliptic curve a third time by drawing a line
through P1 and P2.

• Reflect the resulting point over the x-axis.

Visually, it looks like Figure 2-14.

Figure 2-14. Point addition

We first draw a line through the two points we’re adding (A and B). The third inter‐
section point is C. We then reflect that point over the x-axis, which puts us at the A +
B point in Figure 2-14.

One of the properties that we are going to use is that point addition is not easily pre‐
dictable. We can calculate point addition easily enough with a formula, but intuitively,
the result of point addition can be almost anywhere given two points on the curve.
Going back to Figure 2-14, A + B is to the right of both points, A + C would be some‐
where between A and C on the x-axis, and B + C would be to the left of both points.
In mathematics parlance, point addition is nonlinear.

30 | Chapter 2: Elliptic Curves



Math of Point Addition
Point addition satisfies certain properties that we associate with addition, such as:

• Identity
• Commutativity
• Associativity
• Invertibility

Identity here means that there’s a zero. That is, there exists some point I that, when
added to a point A, results in A:

I + A = A

We’ll call this point the point at infinity (reasons for this will become clear in a
moment).

This is related to invertibility. For some point A, there’s some other point –A that
results in the identity point. That is:

A + (–A) = I

Visually, these points are opposite one another over the x-axis on the curve (see
Figure 2-15).

Figure 2-15. Vertical line intersection

This is why we call this point the point at infinity. We have one extra point in the
elliptic curve, which makes the vertical line intersect the curve a third time.

Math of Point Addition | 31



Commutativity means that A + B = B + A. This is obvious since the line going
through A and B will intersect the curve a third time in the same place, no matter the
order.

Associativity means that (A + B) + C = A + (B + C). This isn’t obvious and is the rea‐
son for flipping over the x-axis. This is shown in Figures 2-16 and 2-17.

You can see that in both Figure 2-16 and Figure 2-17, the final point is the same. In
other words, we have good reason to believe that (A + B) + C = A + (B + C). While
this doesn’t prove the associativity of point addition, the visual should at least give
you the intuition that this is true.

Figure 2-16. (A + B) + C
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Figure 2-17. A + (B + C)

To code point addition, we’re going to split it up into three steps:

1. Where the points are in a vertical line or using the identity point
2. Where the points are not in a vertical line, but are different
3. Where the two points are the same

Coding Point Addition
We first handle the identity point, or point at infinity. Since we can’t easily use infinity
in Python, we’ll use the None value instead. What we want is this to work:

>>> from ecc import Point
>>> p1 = Point(-1, -1, 5, 7)
>>> p2 = Point(-1, 1, 5, 7)
>>> inf = Point(None, None, 5, 7)
>>> print(p1 + inf)
Point(-1,-1)_5_7
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>>> print(inf + p2)
Point(-1,1)_5_7
>>> print(p1 + p2)
Point(infinity)

To make this work, we have to do two things. First, we have to adjust the __init__
method slightly so it doesn’t check that the curve equation is satisfied when we have
the point at infinity. Second, we have to overload the addition operator or __add__ as
we did with the FieldElement class:

class Point:

    def __init__(self, x, y, a, b):
        self.a = a
        self.b = b
        self.x = x
        self.y = y
        if self.x is None and self.y is None:  
            return
        if self.y**2 != self.x**3 + a * x + b:
            raise ValueError('({}, {}) is not on the curve'.format(x, y))

    def __add__(self, other):  
        if self.a != other.a or self.b != other.b:
            raise TypeError('Points {}, {} are not on the same curve'.format
            (self, other))

        if self.x is None:  
            return other
        if other.x is None:  
            return self

The x coordinate and y coordinate being None is how we signify the point at
infinity. Note that the next if statement will fail if we don’t return here.

We overload the + operator here.

self.x being None means that self is the point at infinity, or the additive iden‐
tity. Thus, we return other.

other.x being None means that other is the point at infinity, or the additive iden‐
tity. Thus, we return self.

Exercise 3
Handle the case where the two points are additive inverses (that is, they have the same
x but a different y, causing a vertical line). This should return the point at infinity.
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Point Addition for When x1≠x2

Now that we’ve covered the vertical line, let’s examine when the points are different.
When we have points where the x’s differ, we can add using a fairly simple formula.
To help with intuition, we’ll first find the slope created by the two points. We can fig‐
ure this out using a formula from pre-algebra:

P1 = (x1,y1), P2 = (x2,y2), P3 = (x3,y3)
P1 + P2 = P3
s = (y2 – y1)/(x2 – x1)

This is the slope, and we can use the slope to calculate x3. Once we know x3, we can
calculate y3. P3 can be derived using this formula:

x3 = s2 – x1 – x2
y3 = s(x1 – x3) – y1

Remember that y3 is the reflection over the x-axis.

Deriving the Point Addition Formula
Supposing:

P1 = (x1,y1), P2 = (x2,y2), P3 = (x3,y3)
P1 + P2 = P3

We want to know what P3 is.

Let’s start with the fact that the line goes through P1 and P2, and has this formula:

s = (y2 – y1)/(x2 – x1)
y = s(x – x1) + y1

The second formula is the equation of the line that intersects at both P1 and P2. Using
this formula and plugging it into the elliptic curve equation, we get:

y2 = x3 + ax + b
y2 = (s(x – x1) + y1)2 = x3 + ax + b

Gathering all the terms, we have this polynomial equation:

x3 – s2x2 + (a + 2s2x1 – 2sy1)x + b – s2x1
2 + 2sx1y1 – y1

2 = 0

We also know that x1, x2, and x3 are solutions to this equation, thus:

(x – x1)(x – x2)(x – x3) = 0
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x3 – (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x – x1x2x3 = 0

From earlier, we know that:

x3 – s2x2 + (a + 2s2x1 – 2sy~1~)x + b – s2x1
2 + 2sx~1~y1 – y1

2 = 0

There’s a result from what’s called Vieta’s formula, which states that the coefficients
have to equal each other if the roots are the same. The first coefficient that’s interest‐
ing is the coefficient in front of x2:

–s2 = –(x1 + x2 + x3)

We can use this to derive the formula for x3:

x3 = s2 – x1 – x2

We can plug this into the formula for the line above:

y = s(x – x1) + y1

But we have to reflect over the x-axis, so the right side has to be negated:

y3 = –(s(x3 – x1) + y1) = s(x1 – x3) – y1

QED.

Exercise 4
For the curve y2 = x3 + 5x + 7, what is (2,5) + (–1,–1)?

Coding Point Addition for When x1≠x2

We now code this into our library. That means we have to adjust the __add__ method
to handle the case where x1≠x2. We have the formulas:

s = (y2 – y1)/(x2 – x1)
x3 = s2 – x1 – x2
y3 = s(x1 – x3) – y1

At the end of the method, we return an instance of the class Point using
self.__class__ to make subclassing easier.

Exercise 5
Write the __add__ method where x1 ≠ x2.
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Point Addition for When P1 = P2

When the x coordinates are the same and the y coordinate is different, we have the
situation where the points are opposite each other over the x-axis. We know that this
means:

P1 = –P2 or P1 + P2 = I

We’ve already handled this in Exercise 3.

What happens when P1 = P2? Visually, we have to calculate the line that’s tangent to
the curve at P1 and find the point at which the line intersects the curve. The situation
looks like Figure 2-18, as we saw before.

Figure 2-18. Line that’s tangent to the curve

Once again, we’ll find the slope of the tangent point:

P1 = (x1,y1), P3 = (x3,y3)
P1 + P1 = P3
s = (3x1

2 + a)/(2y1)

Point Addition for When P1 = P2 | 37



The rest of the formula goes through as before, except x1 = x2, so we can combine
them:

x3 = s2 – 2x1
y3 = s(x1 – x3) – y1

Deriving the Slope Tangent to the Curve

We can derive the slope of the tangent line using some slightly
more advanced math: calculus. We know that the slope at a given
point is:

dy/dx

To get this, we need to take the derivative of both sides of the ellip‐
tic curve equation:

y2 = x3 + ax + b

Taking the derivative of both sides, we get:

2y dy = (3x2 + a) dx

Solving for dy/dx, we get:

dy/dx = (3x2 + a)/(2y)

That’s how we arrive at the slope formula. The rest of the results
from the point addition formula derivation hold.

Exercise 6
For the curve y2 = x3 + 5x + 7, what is (–1,–1) + (–1,–1)?

Coding Point Addition for When P1 = P2

We adjust the __add__ method to account for this particular case. We have the for‐
mulas, and now we implement them:

s = (3x1
2 + a)/(2y1)

x3 = s2 – 2x1
y3 = s(x1 – x3) – y1
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Exercise 7
Write the __add__ method when P1 = P2.

Coding One More Exception
There is one more exception, and this involves the case where the tangent line is ver‐
tical (Figure 2-19).

Figure 2-19. Vertical and tangent to the curve

This can only happen if P1 = P2 and the y coordinate is 0, in which case the slope cal‐
culation will end up with a 0 in the denominator.

We handle this with a special case:
class Point:
    ...
    def __add__(self, other):
     ...
 if self == other and self.y == 0 * self.x:  
     return self.__class__(None, None, self.a, self.b)
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If the two points are equal and the y coordinate is 0, we return the point at
infinity.

Conclusion
We’ve covered what elliptic curves are, how they work, and how to do point addition.
We’ll now combine the concepts from the first two chapters to learn elliptic curve
cryptography in Chapter 3.
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CHAPTER 3

Elliptic Curve Cryptography

The previous two chapters covered some fundamental math. We learned how finite
fields work and what an elliptic curve is. In this chapter, we’re going to combine the
two concepts to learn elliptic curve cryptography. Specifically, we’re going to build the
primitives needed to sign and verify messages, which is at the heart of what Bitcoin
does.

Elliptic Curves over Reals
We discussed in Chapter 2 what an elliptic curve looks like visually because we were
plotting the curve over real numbers. Specifically, it’s not just integers or even rational
numbers, but all real numbers. Pi, sqrt(2), e+7th root of 19, and the like are all real
numbers.

This worked because real numbers are also a field. Unlike a finite field, there are an
infinite number of real numbers, but otherwise the same properties hold:

1. If a and b are in the set, a + b and a ⋅ b are in the set.
2. 0 exists and has the property a + 0 = a.
3. 1 exists and has the property a ⋅ 1 = a.
4. If a is in the set, –a is in the set, which is defined as the value that makes a + (–a)

= 0.
5. If a is in the set and is not 0, a–1 is in the set, which is defined as the value that

makes a ⋅ a–1 = 1.

Clearly, all of these are true: normal addition and multiplication apply for the first
part, the additive and multiplicative identities 0 and 1 exist, –x is the additive inverse,
and 1/x is the multiplicative inverse.
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Real numbers are easy to plot on a graph. For example, y2 = x3 + 7 can be plotted like
Figure 3-1.

Figure 3-1. secp256k1 over real numbers

It turns out we can use the point addition equations over any field, including the
finite fields we learned about in Chapter 1. The only difference is that we have to use
the addition/subtraction/multiplication/division as defined in Chapter 1, not the
“normal” versions that the real numbers use.

Elliptic Curves over Finite Fields
So what does an elliptic curve over a finite field look like? Let’s look at the equation y2

= x3 + 7 over F103. We can verify that the point (17,64) is on the curve by calculating
both sides of the equation:

y2 = 642 % 103 = 79
x3 + 7 = (173+7) % 103 = 79

We’ve verified that the point is on the curve using finite field math.
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Because we’re evaluating the equation over a finite field, the plot of the equation looks
vastly different (Figure 3-2).

Figure 3-2. Elliptic curve over a finite field

As you can see, it’s very much a scattershot of points and there’s no smooth curve
here. This is not surprising since the points are discrete. About the only pattern is that
the curve is symmetric right around the middle, because of the y2 term. The graph is
not symmetric over the x-axis as in the curve over reals, but about halfway up the y-
axis due to there not being negative numbers in a finite field.

What’s amazing is that we can use the same point addition equations with the addi‐
tion, subtraction, multiplication, division, and exponentiation as we defined them for
finite fields, and everything still works. This may seem surprising, but abstract math
has regularities like this despite being different from the traditional modes of calcula‐
tion you may be familiar with.
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Exercise 1
Evaluate whether these points are on the curve y2 = x3 + 7 over F223:

(192,105), (17,56), (200,119), (1,193), (42,99)

Coding Elliptic Curves over Finite Fields
Because we defined an elliptic curve point and defined the +, - ,* and / operators for
finite fields, we can combine the two classes to create elliptic curve points over a finite
field:

>>> from ecc import FieldElement, Point
>>> a = FieldElement(num=0, prime=223)
>>> b = FieldElement(num=7, prime=223)
>>> x = FieldElement(num=192, prime=223)
>>> y = FieldElement(num=105, prime=223)
>>> p1 = Point(x, y, a, b)
>>> print(p1)
Point(192,105)_0_7 FieldElement(223)

When initializing Point, we will run through this part of the code:
class Point:

    def __init__(self, x, y, a, b):
        self.a = a
        self.b = b
        self.x = x
        self.y = y
        if self.x is None and self.y is None:
            return
        if self.y**2 != self.x**3 + a * x + b:
            raise ValueError('({}, {}) is not on the curve'.format(x, y))

The addition (+), multiplication (*), exponentiation (**), and not equals (!=) opera‐
tors here use the __add__, __mul__, __pow__, and __ne__ methods from Finite
Field, respectively, and not the integer equivalents. Being able to do the same
equation but with different definitions for the basic arithmetic operators is how we
construct an elliptic curve cryptography library.

We’ve already coded the two classes that we need to implement elliptic curve points
over a finite field. However, to check our work, it will be useful to create a test suite.
We will do this using the results of Exercise 2:

class ECCTest(TestCase):

    def test_on_curve(self):
        prime = 223
        a = FieldElement(0, prime)

44 | Chapter 3: Elliptic Curve Cryptography



        b = FieldElement(7, prime)
        valid_points = ((192, 105), (17, 56), (1, 193))
        invalid_points = ((200, 119), (42, 99))
        for x_raw, y_raw in valid_points:
            x = FieldElement(x_raw, prime)
            y = FieldElement(y_raw, prime)
            Point(x, y, a, b)  
        for x_raw, y_raw in invalid_points:
            x = FieldElement(x_raw, prime)
            y = FieldElement(y_raw, prime)
            with self.assertRaises(ValueError):
                Point(x, y, a, b)  

We pass in FieldElement objects to the Point class for initialization. This will, in
turn, use all the overloaded math operations in FieldElement.

We can now run this test like so:
>>> import ecc
>>> from helper import run  
>>> run(ecc.ECCTest('test_on_curve'))
.
----------------------------------------------------------------------
Ran 1 test in 0.001s

OK

helper is a module with some very useful utility functions, including the ability
to run unit tests individually.

Point Addition over Finite Fields
We can use all the same equations over finite fields, including the linear equation:

y = mx + b

It turns out that a “line” in a finite field is not quite what you’d expect (Figure 3-3).
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Figure 3-3. Line over a finite field

The equation nevertheless works, and we can calculate what y should be for a given x.

Remarkably, point addition works over finite fields as well. This is because elliptic
curve point addition works over all fields! The same exact formulas we used to calcu‐
late point addition over reals work over finite fields. Specifically, when x1 ≠ x2:

P1 = (x1,y1), P2 = (x3,y3), P3 = (x3,y3)
P1 + P2 = P3
s = (y3 – y1)/(x3 – x1)
x3 = s2 – x1 – x3
y3 = s(x1 – x3) – y1

And when P1 = P2:

P1 = (x1,y1), P3 = (x3,y3)
P1 + P1 = P3
s = (3x1

2 + a)/(2y1)
x3 = s2 – 2x1
y3 = s(x1 – x3) – y1

All of the equations for elliptic curves work over finite fields, which sets us up to cre‐
ate some cryptographic primitives.
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Coding Point Addition over Finite Fields
Because we coded FieldElement in such a way as to define __add__, __sub__,
__mul__, __truediv__, __pow__, __eq__, and __ne__, we can simply initialize Point
with FieldElement objects and point addition will work:

>>> from ecc import FieldElement, Point
>>> prime = 223
>>> a = FieldElement(num=0, prime=prime)
>>> b = FieldElement(num=7, prime=prime)
>>> x1 = FieldElement(num=192, prime=prime)
>>> y1 = FieldElement(num=105, prime=prime)
>>> x2 = FieldElement(num=17, prime=prime)
>>> y2 = FieldElement(num=56, prime=prime)
>>> p1 = Point(x1, y1, a, b)
>>> p2 = Point(x2, y2, a, b)
>>> print(p1+p2)
Point(170,142)_0_7 FieldElement(223)

Exercise 2
For the curve y2 = x3 + 7 over F223, find:

• (170,142) + (60,139)
• (47,71) + (17,56)
• (143,98) + (76,66)

Exercise 3
Extend ECCTest to test for the additions from the previous exercise. Call this
test_add.

Scalar Multiplication for Elliptic Curves
Because we can add a point to itself, we can introduce some new notation:

(170,142) + (170,142) = 2 ⋅ (170,142)

Similarly, because we have associativity, we can actually add the point again:

2 ⋅ (170,142) + (170,142) = 3 ⋅ (170, 142)

We can do this as many times as we want. This is what we call scalar multiplication.
That is, we have a scalar number in front of the point. We can do this because we have
defined point addition and point addition is associative.
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One property of scalar multiplication is that it’s really hard to predict without calcu‐
lating (see Figure 3-4).

Figure 3-4. Scalar multiplication results for y2 = x3 + 7 over F223 for point (170,142)

Each point is labeled by how many times we’ve added the point. You can see that this
is a complete scattershot. This is because point addition is nonlinear and not easy to
calculate. Performing scalar multiplication is straightforward, but doing the opposite,
point division, is not.

This is called the discrete log problem and is the basis of elliptic curve cryptography.

Another property of scalar multiplication is that at a certain multiple, we get to the
point at infinity (remember, the point at infinity is the additive identity or 0). If we
imagine a point G and scalar-multiply until we get the point at infinity, we end up
with a set:

{ G, 2G, 3G, 4G, ... nG } where nG = 0

It turns out that this set is called a group, and because n is finite, we have a finite group
(or more specifically, a finite cyclic group). Groups are interesting mathematically
because they behave well with respect to addition:

G + 4G = 5G or aG + bG = (a + b)G
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When we combine the fact that scalar multiplication is easy to do in one direction but
hard in the other and the mathematical properties of a group, we have exactly what
we need for elliptic curve cryptography.

Why Is This Called the Discrete Log Problem?
You may be wondering why the problem of reversing scalar multiplication is referred
to as the discrete log problem.

We called the operation between the points “addition,” but we could easily have called
it a point “operation.” Typically, a new operation that you define in math is denoted
with the dot operator (⋅). The dot operator is also used for multiplication, and it
sometimes helps to think that way:

P1 ⋅ P2 = P3

When you do lots of multiplying, that’s the same as exponentiation. Scalar multiplica‐
tion when we called it “point addition” becomes scalar exponentiation when thinking
“point multiplication”:

P7 = Q

The discrete log problem in this context is the ability to reverse this equation, which
ends up being:

logPQ = 7

The log equation on the left has no analytically calculable algorithm. That is, there is
no known formula that you can plug in to get the answer generally. This is all a bit
confusing, but it’s fair to say that we could call the problem the “discrete point divi‐
sion” problem instead of the discrete log problem.

Exercise 4
For the curve y2 = x3 + 7 over F223, find:

• 2 ⋅ (192,105)
• 2 ⋅ (143,98)
• 2 ⋅ (47,71)
• 4 ⋅ (47,71)
• 8 ⋅ (47,71)
• 21 ⋅ (47,71)
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Scalar Multiplication Redux
Scalar multiplication is adding the same point to itself some number of times. The
key to making scalar multiplication into public key cryptography is using the fact that
scalar multiplication on elliptic curves is very hard to reverse. Note the previous exer‐
cise. Most likely, you calculated the point s ⋅ (47,71) in F223 for s from 1 until 21. Here
are the results:

>>> from ecc import FieldElement, Point
>>> prime = 223
>>> a = FieldElement(0, prime)
>>> b = FieldElement(7, prime)
>>> x = FieldElement(47, prime)
>>> y = FieldElement(71, prime)
>>> p = Point(x, y, a, b)
>>> for s in range(1,21):
...     result = s*p
...     print('{}*(47,71)=({},{})'.format(s,result.x.num,result.y.num))
1*(47,71)=(47,71)
2*(47,71)=(36,111)
3*(47,71)=(15,137)
4*(47,71)=(194,51)
5*(47,71)=(126,96)
6*(47,71)=(139,137)
7*(47,71)=(92,47)
8*(47,71)=(116,55)
9*(47,71)=(69,86)
10*(47,71)=(154,150)
11*(47,71)=(154,73)
12*(47,71)=(69,137)
13*(47,71)=(116,168)
14*(47,71)=(92,176)
15*(47,71)=(139,86)
16*(47,71)=(126,127)
17*(47,71)=(194,172)
18*(47,71)=(15,86)
19*(47,71)=(36,112)
20*(47,71)=(47,152)

If you look closely at the numbers, there’s no real discernible pattern to the scalar
multiplication. The x coordinates don’t always increase or decrease, and neither do
the y coordinates. About the only pattern is that between 10 and 11, the x coordinates
are equal (10 and 11 have the same x, as do 9 and 12, 8 and 13, and so on). This is due
to the fact that 21 ⋅ (47,71) = 0.
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Scalar multiplication looks really random, and that’s what gives this equation asym‐
metry. An asymmetric problem is one that’s easy to calculate in one direction, but
hard to reverse. For example, it’s easy enough to calculate 12 ⋅ (47,71). But if we were
presented with this:

s ⋅ (47,71) = (194,172)

would we be able to solve for s? We can look up the results shown earlier, but that’s
because we have a small group. We’ll see in “Defining the Curve for Bitcoin” on page
58 that when we have numbers that are a lot larger, discrete log becomes an intracta‐
ble problem.

Mathematical Groups
The preceding math (finite fields, elliptic curves, combining the two) was really to
bring us to this point. What we actually want to generate for the purposes of public
key cryptography are finite cyclic groups, and it turns out that if we take a generator
point from an elliptic curve over a finite field, we can generate a finite cyclic group.

Unlike fields, groups have only a single operation. In our case, point addition is the
operation. Groups also have a few other properties, like closure, invertibility, commu‐
tativity, and associativity. Lastly, we need the identity.

Let’s look at each property, starting with that last one.

Identity
If you haven’t guessed by now, the identity is defined as the point at infinity, which is
guaranteed to be in the group since we generate the group when we get to the point at
infinity. So:

0 + A = A

We call 0 the point at infinity because visually, it’s the point that exists to help the
math work out (Figure 3-5).
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Figure 3-5. Vertical line “intersects” a third time at the point at infinity

Closure
This is perhaps the easiest property to prove since we generated the group in the first
place by adding G over and over. Thus, if we have two different elements that look
like this:

aG + bG

We know that the result is going to be:

(a + b)G

How do we know if this element is in the group? If a+b < n (where n is the order of
the group), then we know it’s in the group by definition. If a+b >= n, then we know a
< n and b < n, so a+b < 2n, so a+b–n < n:

(a + b – n)G = aG + bG – nG = aG + bG – 0 = aG + bG

More generally, (a + b)G = ((a + b) % n)G, where n is the order of the group.

52 | Chapter 3: Elliptic Curve Cryptography



So we know that this element is in the group, proving closure.

Invertibility
Invertibility is easy to depict (Figure 3-6).

Figure 3-6. Each point is invertible by taking the reflection over the x-axis

Mathematically, we know that if aG is in the group, (n – a)G is also in the group. You
can add them together to get aG + (n – a)G = (a + n – a)G = nG = 0.
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Commutativity
We know from point addition that A + B = B + A (Figure 3-7).

Figure 3-7. The line through the points doesn’t change

This means that aG + bG = bG + aG, which proves commutativity.
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Associativity
We know from point addition that A + (B + C) = (A + B) + C (see Figures 3-8 and
3-9).

Figure 3-8. (A + B) + C: A + B is computed first before C is added

Mathematical Groups | 55



Figure 3-9. A + (B + C): B + C is added first before adding A (note that this results in
the same point as in Figure 3-8)

Thus, aG + (bG + cG) = (aG + bG) + cG, proving associativity.

Exercise 5
For the curve y2 = x3 + 7 over F223, find the order of the group generated by (15,86).

56 | Chapter 3: Elliptic Curve Cryptography



Coding Scalar Multiplication
What we’re trying to do with Exercise 5 is this:

>>> from ecc import FieldElement, Point
>>> prime = 223
>>> a = FieldElement(0, prime)
>>> b = FieldElement(7, prime)
>>> x = FieldElement(15, prime)
>>> y = FieldElement(86, prime)
>>> p = Point(x, y, a, b)
>>> print(7*p)
Point(infinity)

We want to be able to scalar-multiply the point with some number. Thankfully, there’s
a method in Python called __rmul__ that can be used to override the front multiplica‐
tion. A naive implementation looks something like this:

class Point:
    ...
    def __rmul__(self, coefficient):
        product = self.__class__(None, None, self.a, self.b) 
        for _ in range(coefficient): 
            product += self
        return product

We start the product at 0, which in the case of point addition is the point at infin‐
ity.

We loop coefficient times and add the point each time.

This is fine for small coefficients, but what if we have a very large coefficient—that is,
a number that’s so large that we won’t be able to get out of this loop in a reasonable
amount of time? For example, a coefficient of 1 trillion is going to take a really long
time.

There’s a cool technique called binary expansion that allows us to perform multiplica‐
tion in log2(n) loops, which dramatically reduces the calculation time for large num‐
bers. For example, 1 trillion is 40 bits in binary, so we only have to loop 40 times for a
number that’s generally considered very large:

class Point:
    ...
    def __rmul__(self, coefficient):
        coef = coefficient
        current = self  
        result = self.__class__(None, None, self.a, self.b)  
        while coef:
            if coef & 1:  
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                result += current
            current += current  
            coef >>= 1  
        return result

current represents the point that’s at the current bit. The first time through the
loop it represents 1 × self; the second time it will be 2 × self, the third time 4 ×
self, then 8 × self, and so on. We double the point each time. In binary the
coefficients are 1, 10, 100, 1000, 10000, etc.

We start the result at 0, or the point at infinity.

We are looking at whether the rightmost bit is a 1. If it is, then we add the value
of the current bit.

We need to double the point until we’re past how big the coefficient can be.

We bit-shift the coefficient to the right.

This is an advanced technique. If you don’t understand bitwise operators, think of
representing the coefficient in binary and only adding the point where there are 1’s.

With __add__ and __rmul__, we can start defining some more complicated elliptic
curves.

Defining the Curve for Bitcoin
While we’ve been using relatively small primes for the sake of examples, we are not
restricted to such small numbers. Small primes mean that we can use a computer to
search through the entire group. If the group has a size of 301, the computer can
easily do 301 computations to reverse scalar multiplication or break discrete log.

But what if we made the prime larger? It turns out that we can choose much larger
primes than we’ve been using. The security of elliptic curve cryptography depends on
computers not being able to go through an appreciable fraction of the group.

An elliptic curve for public key cryptography is defined with the following
parameters:

• We specify the a and b of the curve y2 = x3 + ax + b.
• We specify the prime of the finite field, p.
• We specify the x and y coordinates of the generator point G.
• We specify the order of the group generated by G, n.
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These numbers are known publicly and together form the cryptographic curve. There
are many cryptographic curves and they have different security/convenience trade-
offs, but the one we’re most interested in is the one Bitcoin uses: secp256k1. The
parameters for secp256k1 are these:

• a = 0, b = 7, making the equation y2 = x3 + 7
• p = 2256 – 232 – 977
• Gx = 

0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
• Gy = 

0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
• n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141

Gx refers to the x coordinate of the point G and Gy the y coordinate. The numbers
starting with 0x are hexadecimal numbers.

There are a few things to notice about this curve. First, the equation is relatively sim‐
ple. Many curves have a and b values that are much bigger.

Second, p is extremely close to 2256. This means that most numbers under 2256 are in
the prime field, and thus any point on the curve has x and y coordinates that are
expressible in 256 bits each. n is also very close to 2256. This means any scalar multiple
can also be expressed in 256 bits.

Third, 2256 is a huge number (see sidebar). Amazingly, any number below 2256 can be
stored in 32 bytes. This means that we can store the private key relatively easily.

How Big is 2256?
2256 doesn’t seem that big because we can express it succinctly, but in reality, it is an
enormous number. To give you an idea, here are some relative scales:

2256 ~ 1077

• Number of atoms in and on Earth ~ 1050

• Number of atoms in the solar system ~ 1057

• Number of atoms in the Milky Way ~ 1068

• Number of atoms in the universe ~ 1080

A trillion (1012) computers doing a trillion computations every trillionth (10–12) of a
second for a trillion years is still less than 1056 computations.

Think of finding a private key this way: there are as many possible private keys in Bit‐
coin as there are atoms in a billion galaxies.
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Working with secp256k1
Since we know all of the parameters for secp256k1, we can verify in Python whether
the generator point, G, is on the curve y2 = x3 + 7:

>>> gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
>>> gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
>>> p = 2**256 - 2**32 - 977
>>> print(gy**2 % p == (gx**3 + 7) % p)
True

Furthermore, we can verify in Python whether the generator point, G, has the order
n:

>>> from ecc import FieldElement, Point
>>> gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
>>> gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
>>> p = 2**256 - 2**32 - 977
>>> n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
>>> x = FieldElement(gx, p)
>>> y = FieldElement(gy, p)
>>> seven = FieldElement(7, p)
>>> zero = FieldElement(0, p)
>>> G = Point(x, y, zero, seven)
>>> print(n*G)
Point(infinity)

Since we know the curve we will work in, this is a good time to create a subclass in
Python to work exclusively with the parameters for secp256k1. We’ll define the equiv‐
alent FieldElement and Point objects, but specific to the secp256k1 curve. Let’s start
by defining the field we’ll be working in:

P = 2**256 - 2**32 - 977
...
class S256Field(FieldElement):

    def __init__(self, num, prime=None):
        super().__init__(num=num, prime=P)

    def __repr__(self):
        return '{:x}'.format(self.num).zfill(64)

We’re subclassing the FieldElement class so we don’t have to pass in P all the time.
We also want to display a 256-bit number consistently by filling 64 characters so we
can see any leading zeros.

Similarly, we can define a point on the secp256k1 curve and call it S256Point:
A = 0
B = 7
...
class S256Point(Point):
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    def __init__(self, x, y, a=None, b=None):
        a, b = S256Field(A), S256Field(B)
        if type(x) == int:
            super().__init__(x=S256Field(x), y=S256Field(y), a=a, b=b)
        else:
            super().__init__(x=x, y=y, a=a, b=b)  

In case we initialize with the point at infinity, we need to let x and y through
directly instead of using the S256Field class.

We now have an easier way to initialize a point on the secp256k1 curve, without hav‐
ing to define a and b every time like we have to with the Point class.

We can also define __rmul__ a bit more efficiently, since we know the order of the
group, n. Since we’re coding Python, we’ll name this with a capital N to make it clear
that N is a constant:

N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
...
class S256Point(Point):
    ...
    def __rmul__(self, coefficient):
        coef = coefficient % N  
        return super().__rmul__(coef)

We can mod by n because nG = 0. That is, every n times we cycle back to zero or
the point at infinity.

We can now define G directly and keep it around since we’ll be using it a lot going
forward:

G = S256Point(
    0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
    0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)

Now checking that the order of G is n is trivial:
>>> from ecc import G, N
>>> print(N*G)
S256Point(infinity)

Public Key Cryptography
At last, we have the tools that we need to do public key cryptography operations. The
key operation that we need is P = eG, which is an asymmetric equation. We can easily
compute P when we know e and G, but we cannot easily compute e when we know P
and G. This is the discrete log problem described earlier.

The difficulty of discrete log will be essential to understanding signing and verifica‐
tion algorithms.
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Generally, we call e the private key and P the public key. Note here that the private key
is a single 256-bit number and the public key is a coordinate (x,y), where x and y are
each 256-bit numbers.

Signing and Verification
To set up the motivation for why signing and verification exists, imagine this sce‐
nario. You want to prove that you are a really good archer, like at the level where you
can hit any target you want within 500 yards as opposed to being able to hit any par‐
ticular target.

Now, if someone could observe you and interact with you, proving this would be easy.
Perhaps they would position your son 400 yards away with an apple on his head and
challenge you to hit that apple with an arrow. You, being a very good archer, could do
this and prove your expertise. The target, if specified by the challenger, makes your
archery skill easy to verify.

Unfortunately, this doesn’t scale very well. If, for example you wanted to prove this to
10 people, you would have to shoot 10 different arrows at 10 different targets from 10
different challenges. You could try to do something like have 10 people watch you
shoot a single arrow, but since they can’t all choose the target, they can never be sure
that you’re not just good at hitting one particular target instead of an arbitrary target.
What we want is something that you can do once, that requires no interaction back
and forth with the verifiers, but that still proves that you are indeed, a good archer
that can hit any target.

If, for example, you simply shot an arrow into a target of your choosing, the people
observing afterward wouldn’t necessarily be convinced. After all, you might have
painted the target around wherever your arrow happened to land. So what can you
do?

Here’s a very clever thing you can do. Inscribe the tip of the arrow with the position
of the target that you’re hitting (“apple on top of my son’s head”) and then hit that
target with your arrow. Now anyone seeing the target can take an X-ray machine and
look at the tip of the embedded arrow and see that the tip indeed says exactly where it
was going to hit. The tip clearly had to be inscribed before the arrow was shot, so this
can prove you are actually a good archer (provided the actual target isn’t just one that
you’ve practiced hitting over and over).

This is the same technique we’re using with signing and verification, except what
we’re proving isn’t that we’re good archers, but that we know a secret number. We
want to prove possession of the secret without revealing the secret itself. We do this
by putting the target into our calculation and hitting that target.
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Ultimately this is going to be used in transactions, which will prove that the rightful
owners of the secrets are spending the bitcoins.

Inscribing the Target
The inscribing of the target depends on the signature algorithm, and in our case that
algorithm is called the Elliptic Curve Digital Signature Algorithm, or ECDSA for
short.

The secret in our case is e satisfying the following:

eG = P

where P is the public key and e is the private key.

The target that we’re going to aim at is a random 256-bit number, k. We then do this:

kG = R

R is now the target that we’re aiming for. In fact, we’re only going to care about the x
coordinate of R, which we’ll call r. You may have guessed already that r here stands
for random.

We claim at this point that the following equation is equivalent to the discrete log
problem:

uG + vP = kG

where k was chosen randomly, u,v ≠ 0 can be chosen by the signer, and G and P are
known. This is due to the fact that:

uG + vP = kG implies vP = (k – u)G

Since v ≠ 0, we can divide by the scalar multiple v:

P = ((k – u)/v)G

If we know e, we have:

eG = ((k – u)/v)G or e = (k – u)/v

This means that any (u,v) combination that satisfies the preceding equation will suf‐
fice.

If we don’t know e, we’ll have to play with (u,v) until e = (k–u)/v. If we could solve this
with any (u,v) combination, that would mean we’d have solved P = eG while knowing
only P and G. In other words, we’d have broken the discrete log problem.
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This means to provide a correct u and v, we either have to break the discrete log
problem or know the secret e. Since we assume discrete log is hard, we can say e is
assumed to be known by the one who came up with u and v.

One subtle thing that we haven’t talked about is that we have to incorporate the pur‐
pose of our shooting. This is a contract that gets fulfilled as a result of shooting at the
target. William Tell, for example, was shooting so that he could save his son (shoot
the target and you get to save your son). You can imagine there would be other rea‐
sons to hit the target and other “rewards” that the person hitting the target would
receive. This has to be incorporated into our equations.

In signature/verification parlance, this is called the signature hash. A hash is a deter‐
ministic function that takes arbitrary data into data of fixed size. This is a fingerprint
of the message containing the intent of the shooter, which anyone verifying the mes‐
sage already knows. We denote this with the letter z. This is incorporated into our uG
+ vP calculation this way:

u = z/s, v = r/s

Since r is used in the calculation of v, we now have the tip of the arrow inscribed. We
also have the intent of the shooter incorporated into u, so both the reason for shoot‐
ing and the target that is being aimed at are now part of the equation.

To make the equation work, we can calculate s:

uG + vP = R = kG
uG + veG = kG
u + ve = k
z/s + re/s = k
(z + re)/s = k
s = (z + re)/k

This is the basis of the signature algorithm, and the two numbers in a signature are r
and s.
Verification is straightforward:

uG + vP where u,v ≠ 0
uG + vP = (z/s)G + (re/s)G = ((z + re)/s)G = ((z + re)/((z + re)/k))G = kG = (r,y)
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Why We Don’t Reveal k

At this point, you might be wondering why we don’t reveal k and
instead reveal the x coordinate of R, or r. If we were to reveal k,
then:

uG + vP = R
uG + veG = kG
kG – uG = veG
(k – u)G = veG
(k – u) = ve
(k – u)/v = e

means that our secret would be revealed, which would defeat the
whole purpose of the signature. We can, however, reveal R.
It’s worth mentioning again: make sure you’re using truly random
numbers for k, as even accidentally revealing k for a known signa‐
ture is the equivalent of revealing your secret and losing your
funds!

Verification in Depth
Signatures sign some fixed-length value (our “contract”)—in our case, something
that’s 32 bytes. The fact that 32 bytes is 256 bits is not a coincidence, as the thing we’re
signing will be a scalar for G.

To guarantee that the thing we’re signing is 32 bytes, we hash the document first. In
Bitcoin, the hashing function is hash256, or two rounds of sha256. This guarantees
the thing that we’re signing is exactly 32 bytes. We will call the result of the hash the
signature hash, or z.

The signature that we are verifying has two components, (r,s). r is the x coordinate of
some point R that we’ll come back to. The formula for s is as above:

s = (z+re)/k

Keep in mind that we know e (P = eG, or what we’re proving we know in the first
place), we know k (kG = R, remember?), and we know z.

We will now construct R = uG + vP by defining u and v this way:

u = z/s
v = r/s

Thus:
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uG + vP = (z/s)G + (r/s)P = (z/s)G + (re/s)G = ((z + re)/s)G

We know s = (z + re)/k, so:

uG + vP = ((z + re) / ((z + re)/k))G = kG = R

We’ve successfully chosen u and v in such a way as to generate R as we intended. Fur‐
thermore, we used r in the calculation of v, proving we knew what R would be. The
only way we can know the details of R beforehand is if we know e.

To wit, here are the steps:

1. We are given (r,s) as the signature, z as the hash of the thing being signed, and P
as the public key (or public point) of the signer.

2. We calculate u = z/s, v = r/s.
3. We calculate uG + vP = R.
4. If R’s x coordinate equals r, the signature is valid.

Why Two Rounds of sha256?

The calculation of z requires two rounds of sha256, or hash256.
You may be wondering why there are two rounds when only one is
necessary to get a 256-bit number. The reason is for security.
There is a well-known hash collision attack on SHA-1 called a
birthday attack that makes finding collisions much easier. Google
found a SHA-1 collision using some modifications of a birthday
attack and a lot of other things in 2017. Using SHA-1 twice, or dou‐
ble SHA-1, is the way to defeat or slow down some forms of this
attack.
Two rounds of sha256 don’t necessarily prevent all possible attacks,
but doing two rounds is a defense against some potential
weaknesses.

Verifying a Signature
We can now verify a signature using some of the primitives that we have:

>>> from ecc import S256Point, G, N
>>> z = 0xbc62d4b80d9e36da29c16c5d4d9f11731f36052c72401a76c23c0fb5a9b74423
>>> r = 0x37206a0610995c58074999cb9767b87af4c4978db68c06e8e6e81d282047a7c6
>>> s = 0x8ca63759c1157ebeaec0d03cecca119fc9a75bf8e6d0fa65c841c8e2738cdaec
>>> px = 0x04519fac3d910ca7e7138f7013706f619fa8f033e6ec6e09370ea38cee6a7574
>>> py = 0x82b51eab8c27c66e26c858a079bcdf4f1ada34cec420cafc7eac1a42216fb6c4
>>> point = S256Point(px, py)
>>> s_inv = pow(s, N-2, N)  
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>>> u = z * s_inv % N  
>>> v = r * s_inv % N  
>>> print((u*G + v*point).x.num == r)  
True

Note that we use Fermat’s little theorem for 1/s, since n is prime.

u = z/s.

v = r/s.

uG + vP = (r,y). We need to check that the x coordinate is r.

Exercise 6
Verify whether these signatures are valid:

P = (0x887387e452b8eacc4acfde10d9aaf7f6d9a0f975aabb10d006e4da568744d06c,
     0x61de6d95231cd89026e286df3b6ae4a894a3378e393e93a0f45b666329a0ae34)

# signature 1
z = 0xec208baa0fc1c19f708a9ca96fdeff3ac3f230bb4a7ba4aede4942ad003c0f60
r = 0xac8d1c87e51d0d441be8b3dd5b05c8795b48875dffe00b7ffcfac23010d3a395
s = 0x68342ceff8935ededd102dd876ffd6ba72d6a427a3edb13d26eb0781cb423c4

# signature 2
z = 0x7c076ff316692a3d7eb3c3bb0f8b1488cf72e1afcd929e29307032997a838a3d
r = 0xeff69ef2b1bd93a66ed5219add4fb51e11a840f404876325a1e8ffe0529a2c
s = 0xc7207fee197d27c618aea621406f6bf5ef6fca38681d82b2f06fddbdce6feab6

Programming Signature Verification
We already have a class S256Point, which is the public point for the private key. We
create a Signature class that houses the r and s values:

class Signature:

    def __init__(self, r, s):
        self.r = r
        self.s = s

    def __repr__(self):
        return 'Signature({:x},{:x})'.format(self.r, self.s)

We will be doing more with this class in Chapter 4.

We can now write the verify method on S256Point based on this:
class S256Point(Point):
    ...
    def verify(self, z, sig):
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        s_inv = pow(sig.s, N - 2, N)  
        u = z * s_inv % N  
        v = sig.r * s_inv % N  
        total = u * G + v * self  
        return total.x.num == sig.r  

s_inv (1/s) is calculated using Fermat’s little theorem on the order of the group,
n, which is prime.

u = z/s. Note that we can mod by n as that’s the order of the group.

v = r/s. Note that we can mod by n as that’s the order of the group.

uG + vP should be R.

We check that the x coordinate is r.

So, given a public key that is a point on the secp256k1 curve and a signature hash, z,
we can verify whether a signature is valid or not.

Signing in Depth
Given that we know how verification should work, signing is straightforward. The
only missing step is figuring out what k, and thus R = kG, to use. We do this by choos‐
ing a random k.

The signing procedure is as follows:

1. We are given z and know e such that eG = P.
2. Choose a random k.
3. Calculate R = kG and r = x coordinate of R.
4. Calculate s = (z + re)/k.
5. Signature is (r,s).

Note that the public key (pubkey) P has to be transmitted to whoever wants to verify
it, and z must be known by the verifier. We’ll see later that z is computed and P is sent
along with the signature.

Creating a Signature
We can now create a signature.
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Be Careful with Random Number Generation

Note that using something like the random library from Python to
do cryptography is generally not a good idea. This library is for
teaching purposes only, so please don’t use any of the code
explained to you here for production purposes.

We do this using some of the primitives that we have:
>>> from ecc import S256Point, G, N
>>> from helper import hash256
>>> e = int.from_bytes(hash256(b'my secret'), 'big')  
>>> z = int.from_bytes(hash256(b'my message'), 'big')  
>>> k = 1234567890  
>>> r = (k*G).x.num  
>>> k_inv = pow(k, N-2, N)
>>> s = (z+r*e) * k_inv % N  
>>> point = e*G  
>>> print(point)
S256Point(028d003eab2e428d11983f3e97c3fa0addf3b42740df0d211795ffb3be2f6c52, \
0ae987b9ec6ea159c78cb2a937ed89096fb218d9e7594f02b547526d8cd309e2)
>>> print(hex(z))
0x231c6f3d980a6b0fb7152f85cee7eb52bf92433d9919b9c5218cb08e79cce78
>>> print(hex(r))
0x2b698a0f0a4041b77e63488ad48c23e8e8838dd1fb7520408b121697b782ef22
>>> print(hex(s))
0xbb14e602ef9e3f872e25fad328466b34e6734b7a0fcd58b1eb635447ffae8cb9

This is an example of a “brain wallet,” which is a way to keep the private key in
your head without having to memorize something too difficult. Please don’t use
this for a real secret.

This is the signature hash, or hash of the message that we’re signing.

We’re going to use a fixed k here for demonstration purposes.

kG = (r,y), so we take the x coordinate only.

s = (z + re)/k. We can mod by n because we know this is a cyclical group of order
n.

The public point needs to be known by the verifier.

Exercise 7
Sign the following message with the secret:

e = 12345
z = int.from_bytes(hash256('Programming Bitcoin!'), 'big')
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Programming Message Signing
To program message signing, we now create a PrivateKey class, which will house our
secret:

class PrivateKey:

    def __init__(self, secret):
        self.secret = secret
        self.point = secret * G  

    def hex(self):
        return '{:x}'.format(self.secret).zfill(64)

We keep around the public key, self.point, for convenience.

We then create the sign method:
from random import randint
...
class PrivateKey:
...
    def sign(self, z):
        k = randint(0, N)  
        r = (k*G).x.num  
        k_inv = pow(k, N-2, N)  
        s = (z + r*self.secret) * k_inv % N  
        if s > N/2:  
            s = N - s
        return Signature(r, s) 

randint chooses a random integer from [0,n). Please don’t use this function in
production, because the random number from this library is not nearly random
enough.

r is the x coordinate of kG.

We use Fermat’s little theorem again, and n, which is prime.

s = (z + re)/k.

It turns out that using the low-s value will get nodes to relay our transactions.
This is for malleability reasons.

We return a Signature object from the class defined earlier.
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Importance of a Unique k
There’s an important rule in signatures that utilize a random component like we have
here: the k needs to be unique per signature. That is, it cannot get reused. In fact, a k
that’s reused will result in you revealing your secret! Why?

If our secret is e and we are reusing k to sign z1 and z2:

kG = (r,y)
s1 = (z1 + re) / k, s2 = (z2 + re) / k
s1/s2 = (z1 + re) / (z2 + re)
s1(z2 + re) = s2(z1 + re)
s1z2 + s1re = s2z1 + s2re
s1re – s2re = s2z1 – s1z2
e = (s2z1 – s1z2) / (rs1 – rs2)

If anyone sees both signatures, they can use this formula and find our secret! The
PlayStation 3 hack back in 2010 was due to the reuse of the k value in multiple signa‐
tures.

To combat this, there is a deterministic k generation standard that uses the secret and
z to create a unique, deterministic k every time. The specification is in RFC 6979 and
the code changes to look like this:

class PrivateKey:
...
    def sign(self, z):

        k = self.deterministic_k(z)  
        r = (k * G).x.num
        k_inv = pow(k, N - 2, N)
        s = (z + r * self.secret) * k_inv % N
        if s > N / 2:
            s = N - s
        return Signature(r, s)

    def deterministic_k(self, z):
        k = b'\x00' * 32
        v = b'\x01' * 32
        if z > N:
            z -= N
        z_bytes = z.to_bytes(32, 'big')
        secret_bytes = self.secret.to_bytes(32, 'big')
        s256 = hashlib.sha256
        k = hmac.new(k, v + b'\x00' + secret_bytes + z_bytes, s256).digest()
        v = hmac.new(k, v, s256).digest()
        k = hmac.new(k, v + b'\x01' + secret_bytes + z_bytes, s256).digest()
        v = hmac.new(k, v, s256).digest()
        while True:
            v = hmac.new(k, v, s256).digest()
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            candidate = int.from_bytes(v, 'big')
            if candidate >= 1 and candidate < N:

                return candidate  
            k = hmac.new(k, v + b'\x00', s256).digest()
            v = hmac.new(k, v, s256).digest()

We are using the deterministic k instead of a random one. Everything else about
sign remains the same.

This algorithm returns a candidate that’s suitable.

A deterministic k will be unique with very high probability. This is because sha256 is
collision-resistant, and no collisions have been found to date.

Another benefit from a testing perspective is that the signature for a given z and the
same private key will be the same every time. This makes debugging much easier and
unit tests a lot easier to write. In addition, transactions that use deterministic k will
create the same transaction every time, as the signature will not change. This makes
transactions less malleable (more on that in Chapter 13).

Conclusion
We’ve covered elliptic curve cryptography and can now prove that we know a secret
by signing something. We can also verify that the person with the secret actually
signed a message. Even if you don’t read another page in this book, you’ve learned to
implement what was once considered “weapons-grade munitions”. This is a major
step in your journey and will be essential for the rest of the book!

We now turn to serializing a lot of these structures so that we can store them on disk
and send them over the network.
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