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There is a growing interest in understanding the energy and environmental footprint of digital currencies, 
specifically in cryptocurrencies such as Bitcoin and Ethereum. These cryptocurrencies are operated by a 
geographically distributed network of computing nodes, making it hard to estimate their energy consumption 
accurately. Existing studies, both in academia and industry, attempt to model cryptocurrency energy 
consumption often based on a number of assumptions, for instance, about the hardware in use or the geographic 
distribution of the computing nodes. A number of these studies have already been widely criticized for their 
design choices and subsequent over- or under-estimation of energy use.

In this study, we evaluate the reliability of prior models and estimates by leveraging existing scientific literature 
from fields cognizant of blockchain, such as social energy sciences and information systems. We first design 
a quality assessment framework based on existing research, and we then conduct a systematic literature 
review examining scientific and non-academic literature demonstrating common issues and potential avenues 
of addressing these issues.

Our goal with this article is to advance the field by promoting scientific rigor in studies focusing on blockchain 
energy footprint. To that end, we provide a novel set of codes of conduct for the five most widely used research 
methodologies: Quantitative energy modeling, literature reviews, data analysis and statistics, case studies, and 
experiments. We envision that this code of conduct would assist in standardizing the design and assessment of 
studies focusing on blockchain-based systems’ energy and environmental footprint.

1. Introduction

All models are wrong, but some are useful.

George E.P. Box

This famous quote from the British statistician George E.P. Box high-

lights both the merits and limits of statistical modeling. All models 
designed to represent real-world systems are inherently limited due to 
their reductive nature; however, they may serve a useful purpose if de-

signed and tested well and if their scope and assumptions are clearly 
indicated. This is particularly true in the case of energy consumption 
models designed for sociotechnical systems [1]. Designing these mod-

els is a non-trivial task that requires a number of social, economic, and 
technical assumptions. The intent behind many of these models is of-
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ten to provide useful insight in the form of an estimate of the energy 
requirement or environmental footprint, rather than an absolute mea-

surement of energy consumed or carbon emission by these systems.

Some of the early models from the 2000s predicted the electricity 
requirements of the internet and computers to varying degrees of accu-

racy. Some early reports suggested that all computers could consume up 
to 50% of US electricity in 2010 [2]. These claims have since been de-

bunked through further research and empirical data [3]. This pattern of 
inaccurate or misleading predictions and measurements regarding the 
energy consumption of a fast-growing information technology is con-

sidered problematic, as it may influence policymakers [4] and may feed 
misinformation to the general public when picked up by popular media.

Decentralized digital assets are one such class of fast-growing in-

formation technology that has garnered significant interest from both 
academia and industry due to its unique energy profile [5]. Bitcoin 
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and other similar decentralized digital assets often employ an energy-

intensive consensus mechanism1 known as proof-of-work (PoW).

By its design, the participants in the PoW-based digital assets are in-

centivized to spend considerable effort, typically by executing compute-

intensive or memory-intensive tasks, on a dynamically calibrated prob-

lem.2 The first participant to find and broadcast the solution to this 
problem within a dedicated time frame is rewarded for their partici-

pation in the form of newly minted cryptocurrencies. For example, on 
June 1, 2022, the reward to find the solution or mine one Bitcoin block 
was approximately 200k USD [7]. This substantial incentive initiates a 
competitive race to mine the next block. Participants invest additional 
computational cycles in solving the problem to increase their chances 
of receiving this reward. Each attempt to find a solution to the prob-

lem incurs an energy cost in the form of electricity spent to power the 
device that solves the problem.

Similar to the early days of the internet and computers, we have seen 
numerous attempts at measuring the electricity consumption of decen-

tralized digital assets such as Bitcoin [8]. It has been a frequent sight 
to see news headlines indicating the colossal energy and environmental 
footprint of Bitcoin. Many of the non-academic literature and (highly 
rated) academic sources used in these news headlines have been criti-

cized for inaccuracy or misleading interpretations [9–11].

While we acknowledge that it is worthwhile to explore the energy 
and environmental footprint of cryptocurrencies such as Bitcoin, we 
stress that this should be done with utmost care to avoid inaccurate 
analysis and unjustified assumptions that may lead to sensational news 
headlines. For instance, the article published by Mora et al. [12] sug-

gests that Bitcoin alone could push global warming above 2 ◦C as soon 
as 2033. This article has been widely criticized for provably inaccu-

rate underlying assumptions, such as participants using unprofitable 
hardware [10,11,13,14]. The article also assumes that total electricity 
consumption is proportional to the number of transactions, a miscon-

ception that several publications explicitly contradict [5,14,15].

As it is inherent to energy modeling, each of these models relies 
on several assumptions to provide an estimate; thus, their accuracy is 
subject to the validity of their underlying assumptions. The scientific 
expectation is that these assumptions are not only mentioned explicitly 
but also backed by verifiable, preferably empirical evidence or justifi-

cation [16].

Unfortunately, as seen in the case of Mora et al. [12], this is not 
always the case. Further research into the reliability of these studied 
by Lei et al. [8]. And Koomey [11] suggested that these issues are not 
isolated to one particular study. However, as they both only focused on 
a small set of models, it is difficult to generalize the results to the whole 
field.

Our study attempts to overcome this limitation by conducting a sys-

tematic literature review of both scientific and non-academic literature 
focusing on the energy and environmental footprint of cryptocurrencies, 
specifically focusing on PoW. We assess the quality of the shortlisted lit-
erature against the guidelines put forth by Lei et al. [8] and Sovacool 
et al. [16].

This article attempts to expand upon the findings of Lei et al. [8]

more formally and rigorously. Unlike Lei et al. [8], we take a holistic 
approach to rigor assessment and base our quality measures on existing 
studies from blockchain energy science as well as information systems, 
social energy sciences, and computer science. This allows us to conduct 

1 In distributed computing systems such as peer-to-peer network-based cryp-

tocurrencies, a consensus mechanism is employed to achieve an agreement 
on a single view of the data such as a ledger of transactions. We refer the 
reader to Zheng et al. [6], for further information on consensus mechanisms in 
blockchain-based systems.

2 In Bitcoin like PoW-based cryptocurrencies, the participants are tasked with 
the problem of finding a block hash value below a set threshold. The difficulty 
of this problem is periodically changed to maintain the system property of a 
10-minute average time difference between two blocks of transactions.

a more rigorous and comprehensive analysis of the field. We also sys-

tematically conduct our literature review using the guidelines put forth 
by Kitchenham and Charters [17], allowing our study to be more trans-

parent and verifiable.

We iteratively refine our quality assessment framework to account 
for domain-specific variations3. Thus, in this work, we present the first 
in-depth analysis of the scientific rigor of blockchain energy and envi-

ronmental models to assess the following question:

Are the existing energy and environmental footprint models and resulting 
estimates for blockchain-based systems trustworthy?

Analyzing PoW’s energy consumption presents unique challenges, 
mainly due to the opaque nature of Bitcoin mining. Comprehensive 
data are hard to come by, leading researchers to use indirect sources 
such as IP addresses or initial public offering (IPO) filings. These meth-

ods, although grounded in reality, offer only rough estimates. While our 
article critiques existing studies, it is essential to interpret these findings 
with these limitations in mind.

It is important to note that the purpose of our article is not to discuss 
whether or to what extent specific studies are flawed but to provide 
tools to transparently discuss the rigor of these studies while allowing 
for improvements in the design and prediction of these models. We 
support and encourage the work done in blockchain energy sciences 
over the last few years and intend to expand on it through this review.

To study the reliability of energy models, we first code and analyze 
relevant scientific and non-academic literature. We review the literature 
published from 2008, i.e., post the introduction of Bitcoin’s white paper 
[18]. This is done by following the guidelines proposed by Kitchenham 
and Charters [17]. As suggested by Kitchenham and Charters [17], our 
review is broken down into five steps: search, selection, quality assess-

ment, data extraction, and analysis. This review resulted in an article 
pool of 128 studies. These articles are then assessed for their scientific 
rigor by using the quality assessment framework based on the guide-

lines of Lei et al. [8] and Sovacool et al. [16].

Following the assessment of the scientific rigor, we consolidate our 
findings in the form of commonly occurring issues in different types 
of studies. We also document potential avenues for addressing these 
known issues. This subsequently led to the development of a novel code 
of practices to promote scientific rigor in blockchain energy studies.

We believe that this study assists the reader in understanding the re-

liability of the current energy and environmental studies in a blockchain 
context. This article also assists researchers and developers in designing 
or refining their existing models through adherence to the code of prac-

tices. The paper makes the following contributions:

• We systematically review the existing literature to document com-

mon issues with energy and environmental impact studies for 
blockchain-based systems (Section 3).

• We develop a novel quality assessment framework for blockchain-

specific studies that can assist in understanding the scientific rigor 
of the energy or environmental impact model (Section 3).

• We identify research gaps specifically with regard to the lack of 
non-Bitcoin-specific investigations in the academic literature. We 
also report on the lack of empirical data for these models (Sec-

tion 4.1).

• We manifest the findings of our review in a set of best practices that 
can assist in designing or improving existing models (Section 5).

2. Background

Cryptocurrencies, depending upon their consensus mechanism, may 
cause two prime concerns from an environmental perspective: the elec-

tricity consumption and the carbon emission associated with the energy 

3 This is particularly important for the guidelines provided by Sovacool 
et al. [16], as these guidelines are not specific to the blockchain domain.
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consumption4. In this section, we provide an overview of how the en-

ergy and environmental footprints of these cryptocurrencies are usually 
measured.

2.1. Note on nomenclature

In the context of blockchain systems, it is important to note that the 
term “energy consumption” is predominantly used in the literature to 
refer to “electricity consumption”. The energy consumed by blockchain-

based systems is primarily in the form of electricity utilized by computer 
systems, which comprise hardware, software, and networking compo-

nents. As such, it may be more accurate to refer to this as “electricity 
consumption” rather than “energy consumption.” However, there are 
instances where the use of the term “energy consumption” may be more 
appropriate, such as when conducting a life cycle assessment (LCA) of 
mining hardware. Throughout this article, we endeavor to use the term 
“energy consumption”, where the use of “electricity consumption” may 
be too restrictive.

2.2. Electricity consumption

As alluded to in the introduction section, measuring the electricity 
consumption of a geographically distributed network is a non-trivial 
task. This problem is compounded when considering decentralized sys-

tems, as it is difficult to find a centralized source of information about 
the network’s physical composition [20,21]. There are two main ways 
of estimating the electricity consumption of a blockchain-based system 
depending on the availability of reliable data on the computing net-

work: bottom-up and top-down.

2.2.1. Bottom-up

A distributed computing network is composed of computational de-

vices that consume a certain amount of electricity per unit of work5. 
Each of these computational devices can have different performance 
and energy efficiency profiles. For example, a network could be made 
up of 100 Raspberry Pi (see www .raspberrypi .com) devices generating 
X units of work in a single unit of time, or it could be made up of 
2 consumer-level personal computers generating the same amount of 
work in the same temporal resolution.

One of the early attempts at using a bottom-up approach for model-

ing the electricity consumption of Bitcoin was made by Bevand [22]. 
In his analysis, Bevand outlined prominent modern Bitcoin mining 
hardware that typically employs application-specific integrated circuits 
(ASICs) designed for Bitcoin mining. For example, an Antminer S9 sys-

tem released in 2017 could perform 13 TH/s, whereas a consumer CPU 
such as Intel i7 (2021) can only perform 2.5 kH/s.

If we are aware of the exact hardware used in the network, including 
the hardware distribution (how many units of each type of device are 
on the network)6, we can use this information to calculate the total 
energy consumed by all the constituting computing devices.

This calculation requires accurate values of each device’s comput-

ing power and energy efficiency. This in itself can be problematic in a 
real-world scenario, as most of the information about power and energy 
efficiency is obtained through data sheets provided by manufacturers. 
These data sheets in most cases are not verified by an independent 

4 There are other environmental impacts associated with cryptocurrency op-

erations, such as E-Waste generation [19]. We briefly touch on this in a subsec-

tion; however, our focus in this article is primarily on energy consumption and 
carbon emissions.

5 In PoW-based cryptocurrencies, the work is often performing hashing oper-

ations to find a nonce value such that the resulting hash value is lower than the 
target.

6 When modeling electricity consumption, hardware distribution is a key fac-

tor. In practice, researchers and practitioners rely on energy efficiency data 
sheets for (more) precise information.

auditor. Furthermore, tuning operational parameters such as clock fre-

quency and supply voltage may even lead to different numbers in prac-

tice. For an accurate measurement, it is also important to know the 
uptime for each device and the actual work done during this uptime.

This gives us a partial understanding of the network’s electricity 
consumption as this calculation does not consider operational electricity 
consumption for devices other than the computing device such as the 
networking or cooling infrastructure. These operational expenses are 
often considered in the form of a fractional value known as power usage 
effectiveness (PUE) [23]. Once we know the electricity consumption 
of each device in the network and the associated PUE value, we can 
calculate the total electricity consumed as follows7:

𝑇 =
∑

𝜀(𝑖) × PUE(𝑖) (1)

where 𝑇 is the total electricity consumption, 𝜀 is the electricity con-

sumption of each constituting computing device and PUE is the addi-

tional operational electricity requirement. This calculation is also visu-

ally illustrated in Fig. 1.

2.2.2. Top-down

Bitcoin and other cryptocurrencies are often described as decentral-

ized systems. Decentralization is a crucial component of the network 
on different levels of operations, such as applications (decentralized ex-

changes), protocols (consensus mechanisms), and networks (distributed 
peer-to-peer networks) [20,24]. This decentralized nature of the net-

work makes it difficult for researchers to collect empirical data on the 
location and hardware of the consensus participants. In PoW-based sys-

tems, these consensus participants are also known as miners.

Due to the lack of reliable empirical information on network partic-

ipants, a large number of energy and environmental models are based 
on a top-down approach [25]. In a top-down modeling approach, the 
model relies on high-level technical, economic, or social variables.

For instance, Vranken’s top-down model [26] is based on the total 
computing power, also known as the hash rate. In De Vries’s model [27], 
the author built an economic model based on the economic rationality 
of the miner.

In this subsection, we provide an abstract overview of how a top-

down model conceptually works; however, we refer the reader to Refs. 
[8,25,26] for an in-depth discussion of top-down modeling.

For Bitcoin, we can calculate the total hash rate of the network by 
using the difficulty of mining [28]. First, an estimate of the hash rate 
on the network is required. This can be derived from a simple statistical 
model that considers the difficulty parameter and the time it takes on 
average to mine a block, which is 10 min for Bitcoin, as applied by 
O’Dwyer and Malone [28]. A more refined model may use empirical 
data on the exact amount of time it takes to mine blocks. For instance, 
for Bitcoin, the difficulty parameter is adjusted every 2016 blocks, and 
hence, some drift may occur in between.

The total hash rate of the network is composed of the combined hash 
rates of a number of different hardware in use, each with a specific 
energy and performance profile. A number of different combinations 
and permutations of available hardware can generate the required hash 
rate. Different models make different assumptions to obtain the total 
hash rate. For example, some models assume that the network is made 
up of only the most efficient commercially available hardware, while 
others consider a pool of hardware with different distributions. We can 
represent this calculation as follows8:

7 It is worth noting that this equation is for illustrative purposes only as in 
the real model, the authors might account for additional factors such as the 
economics of operators.

8 There are often many different combinations of devices possible here with 
different 𝜌. For instance, a small network can be made up of a large number of 
inefficient devices or a small number of highly efficient devices.

http://www.raspberrypi.com
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Fig. 1. Calculating electricity consumption using bottom-up approach.

Fig. 2. Calculating electricity consumption using a top-down approach.

𝐻 =
∑

𝜌 (2)

Here, 𝐻 is the hashing power of the network composed of all the 
individual hashing power (𝜌) of the hardware used in the network. Once 
a pool of hardware is decided, we can similarly calculate the electricity 
consumption to that of bottom-up9:

𝑇 =
∑

𝜀(𝑖) × PUE(𝑖) (3)

We have also illustrated this process in Fig. 2.

2.3. Environmental impact measurement

The scope of the environmental impact of information technologies 
can be very broad ranging from the direct impact caused by E-waste 
to the consumption of electricity generated by non-renewable carbon-

intensive operations such as coal-based power plants [29]. Through our 
literature review, we report that most of the studies in the blockchain 
context focus on the carbon emissions associated with the electricity 
consumption of the network. However, it is worth noting that there are 
a few studies that look at other aspects of the environmental impact of 
cryptocurrencies, such as E-waste generation [19], and scope 2 and 3 
carbon emissions [30]. In this subsection, we focus on carbon emissions.

The carbon emission calculation consists of a five-step process as 
outlined below. It is important to note that these steps are only indica-

tive of the process, and individual studies may differ in their approach:

1. Calculating the total electricity consumed by the network: This can 
be determined by either bottom-up or top-down approaches as dis-

cussed above.

2. Determining the geographic location of the devices in the network: 
In addition to understanding the pool of hardware and their re-

9 The 𝜀 is only for hardware that contributes to 𝐻 above.

spective share of the total network, we also need to know their 
geographic location.

3. Obtaining the energy mix for shortlisted geographic locations: For 
each geographic location, we need to understand the breakdown 
of electricity in the form of its sources of energy. An electricity 
grid in a country with heavy reliance on renewable energy is likely 
to produce considerably less carbon per unit of electricity than a 
country with a coal-based electricity grid.

4. Use grid emission factor to calculate the CO2 emission: A geo-

graphic area with a predominantly green grid should account for 
less carbon emission per unit of electricity generation and con-

sumption, while one with reliance on coal power should have high 
carbon emission. This is captured in the form of a grid emission 
factor. The grid emission factor measures the amount of CO2 emis-

sions per unit of electricity in a given geographic area.

5. Sum all the carbon emissions: In this step, we generate a final 
carbon emission value for the whole network by adding all the 
individual carbon intensity data points from each constituting geo-

graphic location.

2.4. Sensitivity of the blockchain energy consumption model

In the preceding subsections, we provide a brief overview of the 
prominent methodologies used to calculate both the energy and envi-

ronmental impact of cryptocurrencies. It is important to note that the 
bottom-up method, despite seeming straightforward is quite difficult 
to execute for large cryptocurrencies due to the lack of reliable data. 
This may be due to the inherent pseudo-anonymous structure of these 
cryptocurrencies and the reluctance of participants to disclose their 
identities due to the fear of governmental retaliation [31].

Thus, most of the current studies are based on the top-down model-

ing approach, which requires a number of assumptions that may impact 
the final estimate of the model. For example, one of the most widely 
used models for Bitcoin is designed by the CCAF [25]. This model at-
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Fig. 3. Research flow.

tempts to use the profitability of mining to calculate the total power 
consumption of the network. In doing so, the authors made a number 
of assumptions including an assumption that on average the miners pay 
0.05 USD/kWh. If we change the cost of electricity to 0.10 USD/kWh10, 
the final model estimates drop by approximately 38%11. This is a signif-

icant difference based on the change in a single variable, which alludes 
to the sensitivity of the model to its parameters.

Unlike the CCAF model, where most of the parameters are based 
on empirical assumptions, other models do not fair well. For instance, 
the models developed by Mora et al. [12] and De Vries [27] have been 
widely criticized for their underlying assumptions [10,11,13].

In this article, we attempt to systematically document these vari-

ables and their impact on accuracy to allow researchers a means to 
improve their models or representation of the results from these mod-

els.

3. Methodology

In this section, we provide an overview of the methodology used to 
conduct the systematic literature review, quality assessment framework, 
and code of practices. Due to the diverse nature of blockchain research, 
it is difficult to come up with a single “ten steps to quality” measure. 
Thus, we begin our search by identifying and classifying prominent re-

search methodologies employed in blockchain energy sciences. To this 
end, we define two primary research questions for our literature search:

1. RQ1: What are the different methods used to measure/model the 
energy or environmental footprint of blockchain-based systems and 
their associated modeling assumptions?

2. RQ2: What are the implicitly or explicitly acknowledged strengths 
or limitations of these models?

We attempt to answer these questions through a systematic litera-

ture review. For the systematic literature review, we follow the guide-

lines proposed by Kitchenham and Charters [17] to identify relevant 
literature in both academic and non-academic domains. Based on the 
literature review, we iteratively refine and generate a novel quality as-

sessment framework based on the guidelines proposed by Lei et al. [8]

and Sovacool et al. [16].

We then apply this quality assessment framework to the shortlisted 
studies and document common issues with the shortlisted studies. These 
issues form the basis for the code of practices proposed later in the 
study. This code of practices is based on well-established standards from 
information systems, statistics, social energy sciences, and blockchain-

specific literature. The flow of this study is illustrated in Fig. 3.

10 This change is in line with other studies focusing on Bitcoin’s energy con-

sumption. We will discuss how the cost of electricity varies significantly in 
different studies.
11 This calculation is based on data collected on July 23, 2022.

3.1. Systematic literature review

As indicated earlier, we follow the guidelines put forth by Kitchen-

ham and Charters [17]. We conduct our review in 3 phases: In the first 
phase, we construct the search query by explicitly documenting search 
strings. In the second phase, we conduct the search for relevant articles 
by first shortlisting appropriate repositories and sources of academic 
and non-academic literature. In the final phase, we extract the mea-

surement/modeling technique used for energy/environmental footprint 
analysis from the shortlisted articles. These three phases are illustrated 
in Fig. 4.

3.1.1. Phase 1: Search query formation

RQ1 increases the coverage of our research by capturing different 
models and their associated assumptions. If a shortlisted article pro-

poses a new model with assumptions, we include these new variables 
in our quality assessment framework. For each identified variable, we 
document all the assumptions made by the study.

With RQ2, we further solidify our understanding of the limita-

tions associated with these models by documenting the acknowledged 
strengths and weaknesses of each shortlisted model. This documenta-

tion helps us prepare our code of practice.

These two primary research questions serve as the basis of our litera-

ture search strategy. We start by constructing a search string to identify 
relevant literature. We do this by first constructing an initial set of key-

words based on both RQs and then further validating these keywords 
by performing backward and forward snowballing on Vranken [26]12. 
We choose Ref. [26] for snowballing, as it is one of the first papers in 
the field while being one of the highest cited. The final search query is 
of the following structure:

Blockchain: "Blockchain" OR "DLT" OR "bitcoin" OR "

blockchain" OR "cryptocurrencies" OR "cryptocurrency"

OR "digital currency" OR "distributed ledger" OR "

peer-to-peer computing" OR "smart contract platform"

Energy: "electricity" OR "power" OR "power supply"

Consumption: "expenditure" OR "use" OR "utilisation" OR "

utilization"

Environment: "atmosphere" OR "carbon" OR "climate" OR "

ecological" OR "emission" OR "environmental" OR "

green" OR "footprint" OR "e-waste"

Sustainability: "green design" OR "green technology" OR "

sustainable"

3.1.2. Phase 2: Article search

In the article search, we intend to ensure high coverage of mod-

els and their associated limitations and strengths by extracting relevant 
models from both academic and non-academic literature sources. For 
academic sources, we search prominent computer and energy science 

12 We plot a word cloud from the backward and forward snowballing in Ap-

pendix.
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Fig. 4. Systematic literature review protocol.

research repositories: Google Scholar, ACM Digital Library, IEEE Digi-

tal Library, Web of Science, ScienceDirect, Scopus, and SpringerLink13

Out of these search repositories, Google Scholar returned the highest 
number of articles due to its wide scope and coverage of potential non-

academic literature as well. However, due to the limitations imposed by 
Google, it is only feasible to obtain the first 980 results. It is worth not-

ing that the relevance of results depletes significantly in Google Scholar 
after the initial few articles [20].

For non-academic literature results, we identify two primary sources 
of information: the cryptocurrencies consuming the energy and third 
parties providing services around these cryptocurrencies. We conduct 
an exhaustive search of the top 200 cryptocurrencies by market cap 
using the Google search engine to locate any energy or environmental 
footprint models developed for these cryptocurrencies. A complete list 
of cryptocurrencies reviewed is presented in Appendix.

Due to the vast number of results, we limit our Google search to 
only the first 100 results. To capture the models developed by service 
providers, we consult the list of supporters and signatories of the Crypto 
Climate Accord14. As the nature of our query is left intentionally vague 
to improve coverage, we end up with an initial set of 2863 articles. 
Out of these 2863, a majority (2614) of the results are from academic 
sources. The non-academic literature consists of 259 results, mostly in 

13 The exact search query used for each of these platforms is reported in Ap-

pendix.
14 The Crypto Climate Accord is a recent industry-driven accord that limits the 
environmental impact of blockchain technologies. As of June 1, 2022, there are 
200 supports and 150 signatories to the accord.

the form of blog posts and white papers15. In the next phase, we docu-

ment the process used to shortlist the relevant articles.

3.1.3. Phase 3: Shortlisting relevant articles

Due to a large number of articles returned for our initial search, we 
conducted a title and abstract screening to shortlist the articles using 
explicit inclusion criteria as outlined below:

1. The paper’s title mentions energy or environment, or any of the 
synonyms mentioned in Section 3.1.1, or is potentially relevant to 
the study of blockchain energy or environmental impact research.

2. The abstract is relevant to the measurement of energy or environ-

mental footprint.

This filtration was performed by the first author and resulted in 244 
potentially relevant articles. To ensure that the title and abstract re-

view process is reliable, we conduct a reliability test. To do this, we 
performed cross-validation using the mechanism proposed by Fleiss and 
Cohen [32]. We perform cross-validation on a sample of 67 with a con-

fidence interval of 90% and a margin of error of 10% calculated in line 
with the suggestions of Sim and Wright [33]. These 67 shortlisted ar-

ticles were independently screened and reviewed by the second author 
to perform cross-validation. The results from the cross-validation indi-

cate a substantial agreement between the authors with Cohen’s Kappa 
value of 0.71. This suggests that the shortlisting process is reliable.

The title and abstraction process significantly reduces the number of 
articles in our search pool to a set of 244 articles. We then reviewed the 

15 The actual number of non-academic literature included in our study is likely 
significantly high due to the inclusion of results from Google Scholar, which 
tends to capture some non-academic literature sources such as academic blogs.
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Table 1

Relevance matrix.

Factor Yes No

Measurement or modeling technique identified for energy/electricity 
consumption

0.5 0

Measurement or modeling technique identified for environmental 
footprint

0.5 0

Acknowledgment of strength and/or weakness of an 
energy/environmental footprint model

0.5 0

full text of these 244 articles to assess their relevance. To assess their 
relevance to our survey, we define a relevance matrix for shortlisting 
in Table 1. A study that complies with any one of these three factors is 
included in our final set of relevant articles. This results in the final set 
of 128 studies that are considered directly relevant to our research. A 
complete list of all the shortlisted studies is included in Appendix.

3.1.4. Completeness of quality assessment framework and reliability of 
coding

To ensure the completeness of the quality assessment framework, 
we iteratively refine it as we progress through the full review of the 
shortlisted articles. To ensure reliability in the refinement process, any 
suggested amendments to the framework are discussed with both the 
authors and an independent expert observer. For this study, Dr. Alan 
Ransil of Filecoin Green and Procotol Labs volunteered for the role 
of independent expert observer. There were no disagreements on the 
refinement of the quality assessment framework. The concluding frame-

work is documented in the subsection.

The finalized quality assessment framework is then used for the 
quality assignment of all shortlisted articles. To ensure reliability in 
this process, we perform a reliability test by independently reviewing 
a subset of the shortlisted articles (8). Both authors agree on seven of 
the assignments with a disagreement on several aspects of one article. 
This disagreement was resolved when the article was reviewed by an 
independent expert observer.

3.2. Development of quality assessment framework

Objectively assessing and discussing the scientific rigor of a field as 
diverse as blockchain is a difficult exercise mostly due to the diverse 
nature of the research and application of this technology. In this study, 
we attempt to understand the common issues in the design and execu-

tion of these studies and provide guidelines for avoiding these mistakes. 
To do this, we first adopt the basic research elements proposed by So-

vacool et al. [16] into four quality indicators: clear research question, 
building upon existing knowledge, explicit research design, and relia-

bility assessment of the underlying data. We document these four basic 
research quality indicators, their associated measurement techniques, 
and the reference literature used to derive the categorization in Table 2.

These four indicators of basic research quality allow us to discuss re-

search design independent of underlying research methodologies. Out 
of these four indicators, clear research questions and building upon ex-

isting knowledge are more applicable to the scientific literature, while 
the last two are equally applicable to studies in the non-academic liter-

ature as well.

It is expected that a scientific study should contain a research 
question, ideally explicitly stated within the text body [34]. The sec-

ond indicator focuses on the use of existing knowledge to inform the 
construction of newer models, which can be in the form of building 
upon existing energy or environmental footprint models within the 
blockchain domain or the application of theories from fields such as 
economics or social sciences. The use of existing theory promotes the 
evolution of the research within a field while providing a more robust 
mechanism to discuss strengths and limitations.

Another important research aspect of studies that focus on the en-

vironmental impact of technology is the reproducibility of the analysis. 

We capture this through the third basic research quality indicator, ex-

plicit research design. Within this indicator, we expect that a study 
should contain sufficient details of the study design and execution to 
permit independent reproduction. It is also expected that a study re-

liant on a non-public dataset should share the dataset and appropriate 
source code where possible.

If the study is utilizing data sources from non-peer-reviewed studies 
or investigations, it should include a detailed description of poten-

tial reliability issues in the data. This is particularly important in the 
blockchain context, as the non-academic literature often contains un-

vetted datasets for which the reliability is not validated.

3.2.1. Different research methodologies

Through the full-text review of the final set of 128 studies, we iden-

tified prominent research methodologies employed in the shortlisted 
studies. We review all the shortlisted articles and classify them based on 
the scheme provided by Sovacool et al. [16]. In total, we identify five 
distinct research methodologies: quantitative energy modeling, litera-

ture review, data analysis and statistics, case studies, and experiments.

Out of these five, the quantitative energy modeling approach is 
highly dependent on the structure of cryptocurrency and the model-

ing approach adopted (top-down or bottom-up). Therefore, the quality 
indicators for quantitative energy modeling are closely tied to the vari-

ables discussed in Section 2. Unlike quantitative energy modeling, other 
research methodologies are not as dependent on the structure of the 
cryptocurrency and can benefit from more generic field-specific quality 
indicators. For instance, the way a literature review is conducted is in-

dependent of the subject under review. Thus, we reason that it is more 
appropriate to employ quality indicators that focus on the method ir-
respective of the subject. This focus on quality indicators centered on 
the method allows us to examine studies that might not be specific to 
popular crypto-assets such as Bitcoin and Ethereum.

In the following subsection, we briefly describe each of these re-

search methodologies and provide an outline of the quality assessment 
mechanism.

• Quantitative energy modeling: Quantitative models rely on a ro-

bust dataset that is used in conjunction with a social, economic, or 
technical model of the blockchain. For instance, the CCAF model 
is an example of a computational economic model, while the Digi-

conomist model is an example of a socioeconomic model. Both of 
these models are based on the use of quantitative analysis for the 
estimation of energy consumption. The exact model composition 
within quantitative modeling can be based on any combination of 
the social [9,37–39], economic [8,11,16,26], and technical vari-

ables above; thus, the exact quality indicators vary significantly 
depending on the model formulation and the intended use. Tech-

nical variables considered in these studies may include hardware 
composition [8,11,16], geographic data [8,11,16,22], and tempo-

ral resolution of the model and its underlying data [16]. These 
categories are outlined in Table 3. It is worth noting that while 
most of the discussion here focuses on PoW, the identified quality 
indicators may also apply to other consensus mechanisms such as 
proof-of-stake. However, we leave the refinement of these quality 
indicators for other consensus mechanisms to future work.

• Literature review: A narrative review of the literature can provide 
useful insights into existing models and the potential strengths and 
weaknesses of these models. These reviews can be targeted toward 
different crowds, some of which focus exclusively on experts in the 
domain [8], while others are a more general introduction to the 
energy and environmental footprint of blockchain [26].

Literature reviews are widely used in a number of cognizant fields, 
such as information systems [17] and computer science [16,41]; 
thus, there is a wealth of guidelines on the quality of these reviews. 
We shortlist a subset of these guidelines based on Refs. [16,17,41], 
and construct our quality indicators as outlined in Table 4.
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Table 2

Basic research quality indicators.

Quality indicators Measurement Application area Reference

BR1: Clear research question Explicit or implicit research question Academic literature [16,34]

BR2: Building on existing knowledge Use of a theory or framework from existing studies Academic literature [16,34]

BR3: Explicit research design Clear research methodology, public data and source code 
(where appropriate)

Academic and non-academic literature [8,16,34,35]

BR4: Reliability of external data Reliability assessment Academic and non-academic literature [8,16,34,36]

Table 3

Quality indicators for quantitative energy modeling.

Quality indicators Description Measurement Reference

QM1: Hardware composition Hardware or pool of hardware used for calculation of energy 
consumption

Examination of the (accuracy of) exact 
hardware distribution, checking assumption 
(accuracy) related to hardware efficiency

[8,11,16]

QM2: Geographic data Geographic data such as the location of miners in the network is 
crucial for calculating CO2 emissions

Assessment of the methodology used for the 
extraction of geographic distribution

[8,9,11,16]

QM3: Economics Participating in a cryptocurrency incurs both capital expenditure 
to acquire hardware and related operational expenses

Analyzing the cost of electricity, power usage 
effectiveness (PUE) value, hardware lifespan, 
impact of transaction fees and halving on 
rewards

[8,11,16,26,38,40]

QM4: Social Incentive engineering behind the design of proof-of-work (PoW) 
requires the miners to be rational, this also needs to be accounted 
for when calculating energy consumption

Rationality of agents [9,37,38]

QM5: Carbon intensity data The carbon intensity data is crucial for calculating environmental 
impact of these crypto-assets

Source of the data and geographical 
resolution

[8,10,11,26]

QM6: Time resolution The data used in quantitative energy modeling tends to evolve 
over time along with the model itself thus it is important to 
provide time resolution for the data along with appropriate 
archiving of legacy data or model parameters

Review of the data and model parameters [16]

Table 4

Quality indicators for literature review.

Quality indicators Description Measurement Reference

LR1: Type of review method Some review methods such as narrative review are considered less 
rigorous than a meta-analysis of the literature, we follow the guideline 
to classify rigor based on method type

Review of method [16,17,41]

LR2: Explicit criteria To avoid bias, it is important to document explicitly the RQs, search 
strings, inclusion and exclusion criteria

Review of method [16,17,41]

LR3: Appropriate search database In fields like blockchain, a significant portion of the research is 
conducted within non-academic literature thus it is important to have 
a high coverage

Review of method [16,17,41]

LR4: Sampling process documentation If only a specific sample is analyzed, it is important to document the 
process

Review of method [16,17,41]

Table 5

Quality indicators for data analysis and statistical models.

Quality indicators Description Measurement Reference

DA1: Type of analysis performed Some analysis methods such as univariate are considerably less 
rigorous than a longitudinal multivariate analysis

Review of method [16,42]

DA2: Clear hypothesis It is important that in statistical analysis, the hypothesis is clearly 
stated and evaluated

Review of method [16,34,42]

DA3: Practical vs. statistical significance High statistical significance does not necessarily mean that the 
relationship analyzed or predicted is of practical significance thus the 
practical significance must be discussed when presenting a statistical 
significance value

Review of method [16,42]

• Data analysis and statistics: Unlike quantitative energy modeling, a 
method that relies on data analysis and basic statistics is far less so-

phisticated. These models often rely on univariate or multivariate 
analysis of variables associated with the energy or environmental 
footprint of cryptocurrencies. Sovacool et al. [16] provided an ex-

tensive guideline on quality indicators for these studies, and we 
compound their guidelines with the 10 rules proposed by Kass 
et al. [42]. Based on these two studies, we identify three relevant 
aspects of studies within the blockchain energy space, and these 
three aspects are outlined in Table 5.

• Case studies: Case studies allow us to take an in-depth look at a 
specific instance of a broader phenomenon [43]. In energy studies 
of blockchain, these case studies are often specific to cryptocurren-

cies and their energy or environmental footprint. There is a wealth 
of literature on the selection and execution of case study analysis 
to ensure that the studies are of high relevance to the broader field 
[43,44]. We adopt and document these guidelines in Table 6.

• Experiments: In some instances where it might be difficult to ex-

tract information from observations, it may be useful to conduct 
experiments [16,45]. In the blockchain energy domain, these ex-

periments are often performed to calculate the energy consumption 
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Table 6

Quality indicators for case studies.

Quality indicators Description Measurement Reference

CS1: Case selection Selecting an appropriate case study is important to ensure that the 
results are generalizable or of extreme cases that may explain a 
specific phenomena

Review of selection 
mechanism

[16,43,44]

CS2: Clear boundaries Case studies can be very broad or hyper-specific thus it is important to 
document the bounds of the study

Review of method [16,43,44]

CS3: Measurable dependent and independent variables If the case study is analyzing a phenomenon, it is crucial to clearly 
define the dependent and independent variables

Review of method [16,43,44]

Table 7

Quality indicators for experiments.

Quality indicators Description Measurement Reference

EX1: Representative sample Selection of the experiment object is crucial for the 
generalizability of results

Review of selection mechanism [16,45]

EX2: Choice of setting The settings of the experiment should closely resemble that 
of the real world object to ensure reliable results

Review of method [16,45]

of a specific device and then use that information to generate mea-

surements for a subset or the whole of the network. The quality 
indicators for the experiments are shown in Table 7.

In the next section, we employ these quality indicators and assess the 
quality of the academic and non-academic shortlisted literature through 
the systematic literature review.

4. Results

In this section, we provide an overview of our quality analysis. We 
begin by describing the trends in the literature followed by a description 
of the prominent results.

The field of blockchain energy science is quite new, with the first 
academic study published in 2014. The field has only seen traction since 
2018. The non-academic literature has specifically seen large growth 
since 2020, a period also referred to as the DeFi summer [46].

The research methodologies in use have also evolved. In the early 
years, most of the models proposed were quite simple data analysis and 
statistical models, but since then, these have evolved into more mature 
quantitative models incorporating economic, social, and technical mod-

eling. The field has also seen an evolution in each of these research 
methods as well. For example, we note a trend toward more sophisti-

cated literature reviews such as meta-review.

The biggest development in terms of influential literature has been 
the introduction of the Digiconomist index [47] and then the Cambridge 
Bitcoin Electricity Consumption index [25]. Both of these indexes now 
underpin several of the assumptions made by newer studies. For in-

stance, the value of electricity cost has seen a significant change since 
the introduction of the CCAF index, and a majority of newer studies as-

sumed the cost of electricity to be 0.05 US Cents/kWh in line with the 
assumption made by the Cambridge Index.

These trends, however, do not indicate that the field is becoming 
more rigorous over time. In the following subsection, we discuss the ba-

sic research quality indicators followed by more specific quality checks 
for the five research methodologies outlined in Section 3.

4.1. Quality assessment

4.1.1. Basic research quality indicators

We have documented the results from our analysis in Table 8. It can 
be seen that a handful of the shortlisted studies do not describe their 
research goal clearly, making the document difficult to understand and 
contextualize.

A bigger and more systematic issue with research in this domain 
is the lack of building upon existing knowledge. As seen from our 

Table 8

Basic research quality indicator results.

Quality indicators Results

BR1: Clear research 
question

5% (7) studies do not contain a research question

BR2: Building on 
existing knowledge

74% (95) of the analyzed studies do not build upon 
existing theories in blockchain or any other related 
domain

BR3: Explicit research 
design

34% (44) of the studies do not have an explicit research 
design, while 43% (55) of studies do not share data 
whereas 67% (86) of studies do not share source code

BR4: Reliability of 
external data

79% (101) studies do not discuss the reliability of 
external data used in their analysis

analysis, 74% of the studies do not build upon existing theories. For 
instance, in their analysis of the life cycle of Bitcoin mining, Köhler and 
Pizzol [29] utilized the well-established Life Cycle Assessment method-

ology allowing us to use existing theories to assess their estimates and 
independently verify their results.

In contrast, analyses conducted by studies such as Ref. [27] do 
not build on any existing theory and present their own methods with-

out contextualizing it in the existing literature in blockchain or other 
scientific disciplines, making it difficult to compare the robustness of 
the underlying research method. We believe that there needs to be a 
more coordinated approach to build upon existing knowledge within 
the blockchain research domain as well as other cognizant research do-

mains such as energy sciences, economics, and information systems.

Another important aspect of a reliable scientific study is the repro-

ducibility of its results; however, this is not trivial in blockchain energy 
sciences, as 34% of the analyzed studies do not contain enough infor-

mation to reproduce their analysis. This issue is even more prevalent 
when a supporting dataset is needed for reproduction. A large portion 
of studies (43%) do not share their underlying dataset, either requiring 
the reviewer to seek the dataset or, in some cases, deferring the publi-

cation of the dataset to an unspecified period in the future. The widely 
cited CoinShare report [48] is an example of this.

Some of the analyzed studies employ mathematical models that can 
assist in generating a system-wide figure for energy consumption or en-

vironmental footprint. These mathematical models are often deployed 
in the form of an Excel sheet or a computing script. In either of these 
situations, it is desirable to have access to the underlying calculation; 
however, a vast majority (79%) of the studies do not provide access to 
their source code.

As alluded to in the previous section, the field has seen significant 
interest from both academic and non-academic sources in the past four 
years, resulting in a plethora of models based on different assumptions 
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and datasets. However, the reliability of these models and the dataset 
is not well established in most cases. For instance, a common assump-

tion about the lifecycle of typical Bitcoin mining hardware is that the 
hardware will only be profitable for 1–2 years.

This assumption is based on a study by De Vries [27] published in 
Joule as a commentary. However, since its publication, this assumption 
has been widely criticized for its oversimplified view of mining oper-

ations and dependence on anecdotal examples to back the assumption 
[11].

Several studies have also established that the mining hardware used 
in Ref. [27], for example, was profitable for over four years since its pro-

duction, undermining the assumptions in the initial study. However, as 
Ref. [27] is the first to give an estimate of the lifecycle of a typical 
Bitcoin miner, it is still being used in numerous studies despite the po-

tential flaws. This is one of several instances where a flawed or outdated 
study has been widely used to develop newer models. Based on our anal-

ysis, we report that a majority of the studies (79%) analyzed rely on an 
external dataset but do not acknowledge any potential validity issues in 
these studies.

The basic research quality indicators suggest that the field is likely 
evolving toward more mature research methodologies; however, the 
reproducibility of this research is hampered by poor data and source 
code-sharing practices. It can also be seen from this analysis that most 
of this evaluation is performed in small silos rather than the whole field 
evolving together. This is most likely due to the lack of reuse of theory 
and high dependence on some non-academic or unvalidated datasets. 
We address these potential research limitations in Section 7, where we 
propose a set of novel codes of practices that may assist in improving 
the quality of research.

4.1.2. Quality of quantitative energy modeling studies

A majority of the studies analyzed are quantitative energy models; 
thus, we start our discussion by providing an overview of the quality 
of quantitative energy models. We highlight our results per quality in-

dicators from Table 3. The following subsection highlights some of the 
common issues while providing a thematic overview of each of these 
quality indicators. We refer the reader to the supporting material avail-

able at: www .github .com /ashishrsai /energy for more detailed results.

1. QM1: Hardware assumptions

(a) Improper hardware efficiency assumptions:

• In Ref. [12], the authors kept the power efficiency of mining 
hardware constant while conducting their simulations for the 
next 100 years. They did not provide clear reasoning behind 
their choice. This has been criticized by many matters pub-

lished in Nature Climate Change [10,13,14]. These studies 
have demonstrated that this choice alone impacted Mora et 
al.’s results [12] considerably, rendering their analysis prov-

ably inaccurate.

It is also worth noting that in economic equilibrium where 
miners’ revenues and costs are equal, hardware efficiency 
does not have an impact on a PoW blockchain’s total elec-

tricity consumption anymore [5,49].

(b) Assuming single hardware in use:

• A more common error in many of the analyzed studies is in 
their decisions regarding the composition of the hardware 
pool, including the choice of hardware and the proportion 
of each machine. In their initial attempt O’Dwyer and Mal-

one [28] did not incorporate a diverse range of hardware in 
their analysis. Instead, their estimates were derived from the 
lowest (commodity) and highest (specialist) hardware config-

urations. While this methodology could have influenced the 
accuracy of their results, it is essential to understand the con-

text in which they were operating. At that time, detailed data 
about the global distribution of Bitcoin mining, especially in 
relation to electricity costs, were not as comprehensive as 

they are now. It should be acknowledged that O’Dwyer and 
Malone [28] did posit that Bitcoin might consume electricity 
equivalent to Ireland’s consumption, although without de-

tailed calculations to back this claim—a point later critiqued 
by Koomey [11] and Vranken [26]. However, their estimates, 
while representing the extreme boundaries, provided an es-

sential early glimpse into the potential energy consumption 
of Bitcoin. It is important to recognize that both the lower 
and upper bounds, while offering a range, may not be rep-

resentative of the entire network, as it is unlikely that all 
participants would be operating either the most or the least 
efficient hardware.

• In another study [50], it is worth mentioning that the 
methodology employed focused on a single hardware de-

vice’s efficiency rather than a pooled hardware assessment. 
It is essential to recognize that our critique in this context 
should be regarded within the context of our survey article’s 
broader objective, which is to scrutinize and evaluate exist-

ing research works. Gallersdörfer’s study did not specifically 
aim to deliver a solitary estimate; rather, it attempts to ap-

proximate the additional electricity consumption attributable 
to various PoW currencies.

For instance, in their examination of Bitcoin, the authors 
selected the Bitmain Antminer S17 Pro 53TH as the repre-

sentative hardware device. However, we note that they did 
not offer compelling evidence or a robust rationale for this 
particular choice as a suitable proxy for the entire network’s 
characteristics. This lack of justification may raise questions 
regarding the generalizability of their findings to the broader 
Bitcoin network and, by extension, other PoW currencies.

(c) Filling in the missing data:

• In a more recent study by Stoll et al. [37], the authors at-

tempted to improve the accuracy of the hardware pool by 
reviewing IPO filling for three major Bitcoin mining hard-

ware providers. They assumed that the top three hardware 
providers control all of the supply despite each listed IPO ac-

knowledging that there is approximately 5% to 15% of supply 
beyond these three providers. The exact distribution between 
these three suppliers also varies considerably between the 
three IPOs and the article itself. We believe this limits the 
reliability of this model considerably. The authors addition-

ally made many assumptions that are not based on the data 
provided within the IPO reports, such as the assumption in 
their supplementary Sheet 3.4, these assumptions lack empir-

ical basis while being consequential to the final prediction. 
Assumptions made by Stoll et al. [37]:

i. The IPO filing does not specify the sales figures per 
model; thus, the authors assumed an equal distribution 
of sales on all available ASIC models.

ii. Post the publication of the IPO filings, the authors as-

sumed that the number of ASICs sold per month in 2018 
stays constant.

Both of these assumptions may skew the results in favor of old 
hardware that might not be as efficient as newer iterations. 
Similar assumptions of the equal spread of device sales over 
a time horizon are also foundational to the work presented in 
Ref. [27].

• In the follow-up work, De Vries [51] attempted to justify how 
old devices (specifically Antminer S9) are still the dominant 
mining hardware, this is supposedly backed by the evidence 
in supplementary data Sheet 1, however, on inspecting the 
data sheet we notice that in 2019, for H1 (first half of the 
year), the author had assumed (Assumption b) that the sales 
of Bitmain devices are equally distributed among all mod-

els (including the old Antminer S9 and newer S11, etc.). 
This assumption is not justified by any empirical evidence 

http://www.github.com/ashishrsai/energy
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or rationalization. Similarly, for Q3 in 2019, the author ap-

plied Assumptions e and f. Assumption e establishes an arbitrary 
distribution of sales between the three producers; this distri-

bution is not backed by any empirical evidence. Assumption f
assumes that the ratio of sales between two ASIC devices (in-

cluding S9) remains the same as H1 of 2019 and is equally 
spread between available models.

(d) Random distribution of hardware in the pool:

• Another type of error in constructing the hardware pool is a 
random distribution of hardware shares. For instance, Mora 
et al. [12] assumed a random assignment of mining hardware 
that leads to an equal probability that old hardware is used 
to mine a block as frequently as a newer, more efficient one, 
leading to an inflated electricity consumption figure.

2. QM2: Geographic data

(a) Using mining pool location:

• Mining pools are widely used in Bitcoin mining, as it is often 
profitable to mine in a group rather than individually [52]. 
Participation in a pool can lead to an overall improvement in 
the expected return from the mining operation. Studies such 
as Mora et al. [12] used the IP address of a mining pool to 
assign a geographic location to a miner. This approach has 
been questioned extensively in the literature, as anyone can 
join a mining pool irrespective of their geographic location 
[10]. This approach was also used by Onat et al. [53], where 
the study attributes the central server of a pool as the sole 
geographical location where all mining takes place. This is 
considered provably inaccurate [10].

(b) Extrapolation of data:

• Using the Cambridge dataset: The University of Cambridge, 
through their annual surveys, has been able to map 32% to 
37% of Bitcoins mining power to a specific geographic loca-

tion [25]. This dataset explicitly states that it only captures 
32% to 37% of all the computing power in the network; 
despite this, De Vries et al. [54] used anecdotal examples 
to justify their reliance on the extrapolation of the Cam-

bridge dataset to represent the whole network. The two non-

academic literature examples used do not provide scientific 
evidence of actual distribution; thus, it is safe to assume that 
the validity of this study is considerably limited.

• Using public pools data: In Ref. [37], the authors used the lo-

cation distribution of the mining pool BTC.com and assumed 
that it is representative of all Chinese pools, which is not 
backed by any reason or data. Similarly, the authors also 
used the location distribution of Slushpool and assumed it 
to be representative of all European pools. They additionally 
treated unknown/other pools as Chinese or European pools 
according to the ratio of Chinese to European pools. All of 
these assumptions have an impact on the accuracy of their 
model and their subsequent results.

3. QM3: Economics

(a) Cost of electricity:

• Cost assumption without empirical evidence: In their attempt, 
O’Dwyer and Malone [28] assumed the electricity cost may 
be considered high (0.10 USD/kWh). The authors reasoned 
for their choice by selecting the lowest electricity cost in the 
eurozone. As it is now established that a majority of min-

ing occurs in countries with lower costs [25], this assump-

tion may not hold true. In his work, Digiconomist assumes 
electricity cost to be 0.05 USD/kWh, however, their choice 
is not backed by any empirical data. In the University of 
Cambridge’s Bitcoin Electricity Consumption Index, they also 
chose 0.05 USD/kWh as a reasonable estimate by citing “con-

versations with experts” as justification however there is no 
evidence, such as interview transcripts to make the claim 
traceable.

Fig. 5. Choice of the cost of electricity over time.

To demonstrate the variance in the choice of electricity cost, 
we plot the choice from all the reviewed studies in Fig. 5. 
Fig. 5 shows that there is a trend toward using 0.05 USD/kWh 
as the value since 2019. We attribute this trend to the intro-

duction of the Cambridge index and their choice of electricity 
cost.

(b) Power usage effectiveness (PUE):

• Not considering PUE: A number of works such as Refs. 
[26,50] excluded PUE consideration from the analysis, likely 
limiting the validity of their results to just machines used for 
mining.

• No justification for the selected PUE value: This is surpris-

ingly common in studies that we examined. We believe this to 
be a significant limitation of the current estimates. The Cam-

bridge Index [25] provides no traceable justification for PUE 
value selection. They did state that their conversations with 
the industry suggest a low PUE value. However, they didn’t 
provide any interview transcripts or supporting information. 
Similarly, De Vries [51] didn’t provide any justification for 
their choice of PUE. In the supporting evidence, the PUE 
value is based on an assumption (Assumption i). This is also 
an issue with Stoll et al. [37] to a lesser extent, where the 
authors selected PUE values for small, medium, and large 
miners based on an interview with one miner. We believe this 
is very limited as their analysis demonstrates that a change in 
PUE from 1 to 1.3 results in approximately 26% more elec-

tricity consumption.

• Using hardware lifespan to estimate PUE: In De Vries’s study 
[27], the author stated that the electricity consumption only 
accounts for 60% of all revenue costs. The author attempted 
to justify their choice of this arbitrary number through the 
aforementioned assumption of the limited life cycle of 1–2 
years. This has been widely criticized both in academic [11]

and non-academic literature [9].

(c) Impact of transaction fees and halving on rewards:

• In cryptocurrencies such as Bitcoin, network participants 
perform computationally expensive operations to receive re-

wards. However, the reward for mining decreases over time 
in a process known as halving [38,40]. This has a direct 
impact on the profitability of performing these computation-

ally expensive operations. The economic model of Bitcoin 
assumes that the gradual decrement in block reward is com-

pensated for by the increase in transaction fees paid by the 
users of the system. Most of the surveyed literature does not 
account for the economics of halving and transaction fees in 
their model. This is particularly worrisome for models that 
predict electricity consumption in time horizons involving the 
halving of the block reward.

4. QM4: Social

(a) Hardware lifespan:

• Non-empirical assumption: In De Vries’s study [27], the au-

thor assumed that the life cycle of Bitcoin hardware is around 



Blockchain: Research and Applications 5 (2024) 100169

12

A.R. Sai and H. Vranken

1–2 years. The author used Antminer S9 as an illustrative ex-

ample; however, since the publication of this article in 2018, 
we have seen continuous use and sale of S9 up until the end 
of December 2021. This is also evident in IPO data analyzed 
by Stoll et al. [37]. This is a lifespan closer to 4–5 years16

as opposed to the 1–2 years estimate given by the author. 
This work served as the foundation of follow-up work on the 
carbon emissions of Bitcoin [29], and we believe that the re-

liance on De Vries’s estimate is questionable.

5. QM5: Carbon intensity data

(a) Applying old energy mix and carbon intensity data to current 
or future predictions:

• Mora et al. [12] used 2014 carbon intensity data in the 2017 
analysis, which led to inaccurate estimates, as pointed out by 
Masanet et al. [10]. Similarly, De Vries et al. [54] relied on 
the data for the energy mix from 2019 and applied it to 2021. 
They did acknowledge that they are using old data due to 
the lack of availability of new datasets; however, they didn’t 
explain how it impacts the reliability of their results, making 
it difficult for the reader to assess the reliability of their study. 
We also note that Onat et al. [53] used data from November 
2018, and applied it to all estimates from 2015 up to 2020.

6. QM6: Time resolution

(a) Not reporting time of measurement/prediction/analysis

• A substantial chunk of the analyzed studies (32%) didn’t doc-

ument the time of their analysis or measurement. The lack of 
a temporal resolution makes it difficult to understand the reli-

ability of the model. For instance, without explicitly mention-

ing the time of data collection for Bitcoin mining hardware, 
it is difficult to understand if the model captures appropriate 
hardware at the time. This is also true for the case of carbon 
intensity data, as illustrated above.

(b) Not documenting the evolution of model parameters

• Real-time indexes such as CCAF and Digiconomist evolve 
over time due to the changes in their underlying data or 
changes in assumptions. Documenting these changes can as-

sist in understanding the evolution of these models; for in-

stance, CCAF provides a change log. However, the Digi-

conomist index does not seem to have a change log docu-

menting the changes over time.

4.1.3. Quality of remaining research methods

As is evident from our analysis presented above due to the prema-

ture nature of this research domain, there is a considerable number of 
assumptions, each of which may impact the accuracy of the results. 
Unlike the quantitative models that we have discussed so far, it is rela-

tively easy to assess and improve the rigor of other methodologies due 
to the presence of vast literature on best practices associated with each 
of these methodologies. In this subsection, we provide an overview of 
our analysis. As before, we advise the reader to refer to the supporting 
evidence for an in-depth analysis of the results. (see Fig. 6)

1. Literature review: A majority of the reviews (13 out of 16) were 
narrative reviews that according to Ref. [16] are not as rigorous as 
other forms of reviews (see also Fig. 7) (LR1). Both systematic lit-
erature reviews and meta-reviews were not prominent. Only three 
of the analyzed studies had documented the search and inclusion 
criteria, making it possible to replicate the studies and indepen-

dently estimate the coverage of the review (LR2). We report a 

16 The IPO filling and other sources online tend not to differentiate between 
the different iterations of the same hardware. For instance, the Antminer S9 
sold in 2019 might have a different performance and energy profile than the 
Antminer S9 sold in 2017. This lack of clarity might undermine the suggested 
4–5 years of lifespan.

Fig. 6. LR1: Type of review method and associated rigor (Adopted from Refs. 
[16,55,56]).

Fig. 7. DA1: Data analysis and statistics methods (Adopted from Refs. [16,57,

58]).

similar trend in documenting the search databases and sampling 
process, as only 3 studies report these (LR3 and LR4). This is a ma-

jor limitation in literature reviews, as it is difficult to assess the 
coverage and quality of the analysis without the ability to replicate 
it independently.

2. Data analysis and statistics: Unlike literature reviews which re-

ported that a majority of the studies employed less rigorous re-

search methods, in data analysis and statistics, a majority of the 
studies (7 out of 13) employed high-rigor multivariate longitudinal 
analysis. However, only four studies documented the hypothesis 
clearly, making it difficult to assess the results of the analysis. 
Despite the use of more rigorous research methods, these studies 
suffer a big limitation in acknowledging the practical significance 
of their results. As an example, Jana et al. [59] attempted to use 
a deep neural network to predict electronic waste generation from 
Bitcoin; however, it is not clear if their results are a good represen-

tation of the actual Bitcoin ecosystem or how the predictions could 
be used in a practical context.

3. Case studies: Only a small number of analyzed studies (6) used 
a case study approach. These studies employed a diverse range 
of selection mechanisms, illustrating being the most popular. Our 
analysis suggests that it is difficult to assess the appropriateness 
of a selected case due to the complicated nature of cryptocurren-

cies. For instance, Liu et al. [60] selected an influential case of 
mining in Sichuan and Xinjiang in China to understand the incen-

tives associated with mining there; however, it could be argued that 
the case selection should have accounted for the seasonality of Bit-
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coin mining17. A bigger issue with these studies is the lack of clear 
boundaries; for example, Gundaboina et al. [61] examined the en-

ergy and resource consumption of several hashing algorithms in 
Dogecoin by using a selective piece of hardware without explicitly 
describing the bounds of the analysis. In a majority of these analy-

ses (1 out of 6) it is unclear what the dependent and independent 
variables are.

4. Experiments: Experiments are increasingly popular in proof-of-

stake cryptocurrencies, as it is not difficult to generalize the re-

sults from these experiments to the whole network, as they mostly 
rely on off-the-shelf hardware [62]. However, it is still important 
that the selected hardware for experiments is representative of the 
network’s hardware composition. Out of the four analyzed exper-

iments, only one used a large set of hardware devices to conduct 
the experiments. For instance, Roma and Hasan [63] performed 
an analysis of the Ripple network; however, they only used a sin-

gle piece of hardware with a specific CPU without discussing how 
representative the hardware is of the whole network. All of these 
studies do not account for the settings of the experiment, such as 
geographic variation. This may play a significant role when calcu-

lating the real-world performance of these devices. For instance, Li 
et al. [64] conducted an experiment in an isolated room where they 
removed operational externalities such as heat, which may not be 
a good representation of the operational state of mining hardware.

4.2. Limitation of popular approaches

In the previous subsection, we provided a breakdown of common is-
sues in energy consumption studies, highlighting specific instances from 
the shortlisted studies. In this subsection, we provide a summary of is-
sues for two of the most popular models to contextualize our findings 
better.

4.2.1. Cambridge bitcoin electricity consumption index (CBECI)

Based on our analysis, we consider CBECI to be one of the more care-

fully performed analyses of Bitcoin’s electricity consumption; however, 
we would still caution policymakers and researchers from basing their 
decisions solely on this metric, as CBECI also has known limitations and 
issues.

The most prominent of these issues is the choice to use nonce anal-

ysis methodology by Coin Metrics [65] to improve their hardware pool 
distribution18. CCAF [25] utilized a basket of hardware devices, includ-

ing two Antminer devices S7 and S9. To estimate the share of hashing 
power originating from the Antminer S7 and S9 line devices, CCAF [25]

relied on the data provided by CoinMetrics [65]. On inspection of the 
nonce analysis methodology, we note that this methodology overesti-

mates the share of Antminer S7 considerably19. Their analysis suggested 
up to four million active Antminer S7s, which is significantly higher 
than the reported values from the IPO of Antminer. We also note that 
the hardware pool used by CCAF [25] does not contain an up-to-date 
list of all ASIC miners.

Another critique of the CBECI is regarding their choice of PUE value, 
which is significantly better than Google Data Centers20. CBECI backs 
their choice by claiming that, based on interviews and discussions with 
experts, this is realistic. However, due to the lack of supporting evidence 

17 It is also worth noting that since the imposition of the Chinese ban on min-

ing activities in China in 2021, it has become increasingly difficult to perform 
mining in the Sichuan and Xinjiang provinces.
18 CBECI in their recent update removed the CoinMetrics API discussed here; 
however, this discussion still highlights that CBECI can also suffer from seem-

ingly trivial issues such as reliance on an unvalidated methodology.
19 This flaw in the methodology was also flagged by Digiconomist in his blog: 
https://digiconomist .net.
20 See https://www .google .com /about /datacenters /efficiency/.

such as interview transcripts, we are unable to independently verify 
these claims.

As indicated in QM 6, CBECI does provide a log of changes made to 
their model; however, they do not document the exact parameters and 
their specific values used in each iteration of the model. This makes 
it difficult to clearly understand the evolution of the index over time, 
as the old predictions made by CBECI may also change retrospectively 
with newer model changes.

4.2.2. Digiconomist’s bitcoin energy consumption index

The approach used by the Bitcoin Energy Consumption Index has 
been widely debated both in academia [11] and non-academic [9] lit-

erature. Our review suggests that the foundational approach used by 
Digiconomist as outlined in Ref. [27] is of questionable scientific rigor. 
We specifically question the choices made regarding the life span of the 
hardware and the subsequent calculation of the 60% ratio of electric-

ity cost in miners’ revenue. Unlike the CBECI model, the Digiconomist 
model does not provide a clear change log of the model evaluation.

We suggest that this work should be considered with caution. As 
indicated in the earlier section, the follow-up work [54] of Digiconomist 
suffers from some issues as well, most noticeably the assumptions made 
by the author regarding the equal distribution of hardware sales.

5. Code of practices

As alluded to in Section 1, one of the main contributions of this 
review is the preparation of novel research guidelines that could assist 
in improving the rigor of research in blockchain energy sciences. In the 
previous section, we highlight some of the common issues in terms of 
the scientific quality of the reviewed studies.

The primary recommendation is to avoid those pitfalls; however, we 
acknowledge that this might be difficult to accomplish due to the lack 
of reliable datasets and difficulty in the acquisition of newer data. In 
case it is difficult to avoid any of the abovementioned pitfalls, we give 
some specific recommendations on how the researcher could present 
their research to avoid giving inaccurate predictions, measurements, or 
estimates.

In this section, we propose a novel code of practices segmented into 
three broad categories: basic research design, quantitative energy mod-

eling, and other research recommendations.

5.1. Validation and feasibility

The guidelines presented herein are based on recommendations 
from the literature and provide practical, actionable insights for both 
academic and industrial investigations into the energy consumption of 
blockchain systems. To ensure the validity of these guidelines, the first 
author conducted a review to assess their alignment with observations 
from the literature using the quality assessment framework. This align-

ment was subsequently independently validated by the second author. 
In instances where misalignment was identified, both authors discussed 
the results and refined the guidelines accordingly.

An additional important aspect of these guidelines is their practical 
applicability. To ensure that they could be feasibly implemented, their 
feasibility was evaluated by an independent external expert, Dr. Alan 
Ransil of Filecoin Green and Protocol Labs. These guidelines have since 
been incorporated into the energy model used by Filecoin.

5.2. Basic research design

We have three broad recommendations when designing and execut-

ing a blockchain energy study, and these guidelines are intended for 
both academic and non-academic studies.

https://digiconomist.net
https://www.google.com/about/datacenters/efficiency/
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Fig. 8. Research design as proposed by Kothari [34].

5.2.1. Explicit research methodology

Any study measuring, estimating, or predicting the energy or en-

vironmental footprint of a crypto-asset should be designed to be eas-

ily reproduced. To this end, our first recommendation is to explic-

itly document the methodology employed in the study. We recom-

mend that the research be documented using the 7-step model pro-

posed by Kothari [34], as illustrated in Fig. 8. We provide a brief 
overview of these 7 steps in the following text; however, it is recom-

mended that the reader refer to the detailed description as provided by 
Kothari [34].

1. Clear research problem: The research problem addressed by the 
project must be sufficiently documented in a clear manner. This 
assists the reader in understanding the project’s intended goal with-

out any ambiguity.

2. Review the literature: As discussed in Section 4, due to the lack 
of coherence in this newly developing space, a lot of research de-

velopment is done in small silos, resulting in likely slow progress. 
Thus, we recommend that newer models review the existing litera-

ture thoroughly. To that end, our survey provides the reader with 
an extensive list of relevant academic and non-academic literature. 
We also document progress made by non-academic source21.

3. Development of a hypothesis: Ideally, after performing an exten-

sive literature review, the researcher should have a starting point 
within the literature, this could be an existing model that the re-

searcher intends to build upon or a research methodology that the 
researcher intends to adopt. Before the execution of their research 
methodology, it is important to clearly state the working hypothe-

sis or hypotheses. The hypothesis should be as concise as possible 
to allow testing through the research at the end.

4. Research method: The researcher is expected to succinctly doc-

ument the steps taken by them to test a hypothesis to address 
the research problem. This should be documented in the form of 
a conceptual structure of the research conducted. In the preced-

ing section, we have provided an overview of different research 
methodologies adopted to answer a specific type of research ques-

tion. For instance, if the researcher wants to get an overview of 
the carbon emission of a popular cryptocurrency, they might ben-

efit from first doing a literature review, ideally by following a 
more rigorous method within literature reviews. If the research 
question at the end requires data collection22, it is important to 
perform the sampling of the data appropriately. For instance, if it 
is not feasible to collect data on all mining hardware employed 
in a specific PoW network, an appropriate selection mechanism 
should be employed rather than randomly sampling a selective 
set.

5. Data collection: There are many ways of collecting data for en-

ergy modeling, and documenting each of these methods is be-

yond the scope of this review. We refer the reader to Ref. [34]

for more instructions. However, broadly speaking, it is impor-

21 This document is public, and we hope researchers and practitioners will 
refine and update it as needed. It can be accessed at: https://bit .ly /3csZLg9.
22 Based on our experience, this is required when conducting a quantitative 
energy study.

tant to test the reliability of the data collected either through 
a primary source or a secondary source. We provide more spe-

cific instructions on this for quantitative energy modeling in Sec-

tion 5.4.

6. Analysis of the data: Analyzing the data is crucial for reporting 
at this stage, as the analysis can skew the interpretation con-

siderably. For instance, an analysis conducted only in summer 
might overestimate the overall energy consumption of mining in 
China, as during rainy seasons, mining moves to hydroelectric 
power. It is worth noting that this phenomenon likely does not 
occur anymore due to the ban on mining in China; however, 
similar patterns might occur in other geographical areas. Simi-

larly, solar-powered plants do not generate electricity during night 
and windmills only generate power if there is wind. The analy-

sis should account for extremities as well as known limitations 
as outlined in our Section 4. At this stage, it is also crucial to 
test any hypothesis proposed in step 3. We provide more specific 
instructions on improving the analysis and highlighting the limita-

tions based on research methods in the following Sections 5.3 and 
5.4.

7. Interpret and report: It is important to contextualize the data 
generated through the analysis. For instance, the work of De 
Vries [54] uses a small (34–40%) geographic dataset from Cam-

bridge and presents the results for the whole of the network 
justifying it through a selective set of qualitative non-academic 
literature sources. Our recommendation here is that the anal-

ysis of the data generated through these models or accumu-

lated through a review should always be compounded with 
confidence intervals or sensitivity analysis to clarify the im-

pact of assumptions or lack of data on the models’ perfor-

mance.

5.3. Sharing the data and source code

We identified accessing the data and source code as one of the main 
limitations to independently reproducing the results from a large set of 
studies we analyzed. To account for this limitation, we present two sets 
of recommendations in line with Stodden [66]:

1. Adhere to the following three long-term goals proposed by Stod-

den [66]:

(a) Use a version-control system: The dataset should be version-

controlled, this is specifically important for live indexes such 
as Digiconomist and Cambridge.

(b) Provide standardized citations for data: In order to build upon 
existing datasets, the authors should provide standardized ci-

tations for the datasets. For instance, the authors in Ref. [67]

provided a citable source of the dataset for mining hardware, 
allowing others to build on top of it.

(c) Describe data using standardized terminology and ontologies: 
One of the biggest hurdles in building upon an existing dataset 
is the way data are reported by different studies. We argue that 
there is a need for standardization to incentivize improving ex-

isting datasets rather than replicating the work again. We sug-

https://bit.ly/3csZLg9
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gest adhering to the template used by Cambridge for document-

ing hardware used for Bitcoin (see http://sha256 .cbeci .org).

2. We strongly recommend that if a study is using data from an exist-

ing work, the authors supply data or a link to the data to promote 
transparency and verifiability of their analysis. Ideally, this should 
be done by using the above-listed guidelines.

3. Hardware distribution and location data should contain collection 
and validation steps.

4. If location data are used, we recommend that it be assessed for any 
seasonality patterns that might exist.

Another big limitation, as outlined in Section 4, is the lack of source 
code. Source code for energy analysis often takes two forms: mathe-

matical models implemented using a programming language or Excel 
sheets. We provide two guidelines for sharing source code to account 
for both methods:

1. Excel sheets: The authors should provide details on information 
quality (IQ) and data quality (DQ) proposed by European Spread-

sheet Risks Interest Group O’Beirne [68].

2. Source code: Similar to the long-term recommendations for shar-

ing the data, Stodden [66] suggested that the source code should 
be version-controlled and should contain test routines that allow 
independent testing of the source code.

5.4. Quantitative energy modeling

For conducting quantitative energy modeling in a blockchain con-

text, we provide six guidelines in addition to the basic research guide-

lines proposed above. It is also recommended that the common issues 
outlined in the last section be avoided.

1. Traceable and verifiable justification for hardware assumptions: 
One of the biggest issues with quantitative energy modeling stud-

ies is the lack of evidence for assumptions made by studies on the 
hardware. We specifically suggest that the authors:

(a) State the assumptions within the text and not in supporting 
material.

(b) Add sensitivity analysis or confidence intervals when filling in 
missing data.

2. Traceable and verifiable justification for economic assumption: 
Similar to assumptions about the hardware in use, in economic 
models, it is vital that the authors back their assumptions with ev-

idence. We specifically suggest that the authors:

(a) Should include both capital and operational costs for different 
agent types (small, medium, and large).

(b) The cost of electricity should be as granular as possible; if data 
are missing, a location-based metric should be used.

(c) The hardware lifespan assumption should be validated using 
real-world data.

3. Using or collecting geographic data: Geographic data play a crucial 
role in modeling the environmental footprint of these crypto-assets. 
We recommend that the authors:

(a) Should avoid using mining pool IP address, if used, it should be 
accompanied by sensitivity analysis or appropriate confidence 
intervals.

(b) Should avoid using non-academic literature and unvalidated 
sources for location.

(c) Should include the date of data collection.

(d) Should not extrapolate location data, if done, should be accom-

panied by sensitivity analysis or confidence intervals.

4. The PUE value should be based on empirical evidence. The mod-

eling should also include different types of agents (small, medium, 
and large) if possible.

5. Avoid unreliable sources of data such as proven faulty studies [12]. 
Our study recommends referring to our quality assessment results, 

which include results per reviewed article on www .github .com /
ashishrsai /energy. However, we caution readers that not all identi-

fied issues necessarily indicate equal flaws in the region of articles. 
We suggest that readers use our survey’s results as a guideline 
and judge the severity of issues separately. If sources are not al-

ready reviewed by our survey, we recommend using our quality 
assessment framework to judge their reliability through assessment 
results.

6. The authors should also avoid using improper units of compar-

ison. For instance, Bitcoin and Ethereum do not consume elec-

tricity per unit of transaction but per block [5,14,15]. Com-

paring the per-transaction electricity consumption of Bitcoin or 
Ethereum may be inaccurate or misleading according to Refs. 
[5,14,15].

7. The authors should account for the temporal resolution of the data 
and model parameters. We suggest using time stamps for all the 
data used in the model and the model itself if it evolves over 
time.

5.5. Other research methodologies

Similar to quantitative energy modeling, the prime recommenda-

tion here is to avoid the common pitfalls outlined in Section 4 and 
follow the basic research design guidelines proposed above. We have 
documented our guidelines in more detail on the research repository 
located at https://github .com /ashishrsai /energy /blob /main /COP .pdf. 
We strongly recommend that the reader refer to the repository to 
see the in-depth guidelines for these methodologies. Here, we provide 
an overview of the specific suggestions for other research methodolo-

gies:

1. Literature review: We strongly recommend that the authors adopt 
more rigorous forms of literature reviews such as meta-review or 
systematic literature reviews. It is advised that the authors follow 
the guidelines proposed by Kitchenham and Charters [17] to im-

prove the coverage and reliability of the review.

2. Data analysis and statistics: For data analysis and statistics our 
prime recommendation is that the authors should avoid oversim-

plified analysis and account for the practical significance of their 
results.

3. Case studies: As indicated in Section 4, the selection of the case 
study should be appropriate. We recommend that the authors fol-

low the guidelines put forth by Sovacool et al. [16] for conducting 
a case study analysis.

4. Experiments: Our main recommendation for conducting experi-

ments is to choose an appropriately large sample size.

6. Discussion

There is a clear trend that both academic and non-academic re-

searchers have paid increasing attention to the energy and environmen-

tal footprint of blockchain technologies in recent years. In academia, 
this trend is predominantly focused on accurately understanding and 
predicting the electricity consumption of popular cryptocurrencies such 
as Bitcoin and Ethereum. There is also a smaller fraction of academic 
literature that focuses on other smaller cryptocurrencies, such as IOTA 
and Ripple.

A majority of the academic research in this domain is either purely 
applied or uses inspired basic research with little to no focus on pure 
theory development23 or refinement. This was also reflected through 
our quality indicator BR2, where we reported that a large chunk (74%) 
of academic literature does not build upon existing knowledge.

23 We refer the reader to Sovacool et al. [16] for an in-depth discussion of 
different types of research in social energy sciences.

http://sha256.cbeci.org
http://www.github.com/ashishrsai/energy
http://www.github.com/ashishrsai/energy
https://github.com/ashishrsai/energy/blob/main/COP.pdf
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Unlike the academic literature, non-academic sources had a more 
broad focus on different types of cryptocurrencies. However, most of 
the research in the non-academic sphere is sponsored as we could an-

ticipate. In terms of research design, we notice a trend of more applied 
research with little to no focus on theory building.

It is also clear that many previous studies have faced problems be-

cause they could not access important data from the industry. This lack 
of data sharing often causes studies to make mistakes and get the energy 
use estimates wrong. So, just criticizing the studies themselves might 
not be entirely fair because the industry’s secrecy is a big reason for 
these problems. Our study highlights the pressing need for the industry 
to share data and cooperate more. This is crucial to making sure that 
research on blockchain’s environmental impact is accurate and trust-

worthy. By concentrating on making data more transparent, we can get 
a better grasp of the issues related to digital currencies’ energy and en-

vironmental impact.

6.1. Current problems and potential for improvement

We believe it is crucial to acknowledge the varying degrees of sever-

ity among conceptual errors highlighted in our article. Some errors, 
such as the discrepancies in interpolating the “energy per transaction” 
metric or the utilization of flawed time series analysis models, can have 
significantly larger implications compared to inaccuracies in PUE values 
or nuanced geographic distributions. While we recognize that certain 
aspects of works such as Ref. [51], there are indeed publications, such 
as Ref. [12], with more profound misconceptions that merit closer ex-

amination.

We support the efforts to model, estimate, and predict the energy 
and environmental footprint of these crypto-assets. Our research in this 
article clearly documents the evolution of the field. We believe this evo-

lution will likely keep spurring more discussion and public debate on 
this worthwhile topic. However, we also note that the focus on unreli-

able results may blur or even misguide this discussion.

Our review and analysis make it clear that there are two broad prob-

lems:

1. The most prominent limitation is the lack of rigor predominantly 
caused by a lack of reliable data in many published studies. We 
have highlighted some specific instances of this throughout Sec-

tion 4 while providing an abstract overview of the whole field 
where appropriate. This lack of rigor might suggest that the esti-

mates and predictions on energy consumption and environmental 
footprint are likely questionable.

2. Our analysis also shows that the current system for publishing sci-

entific/academic literature is lacking in appropriate scrutiny. The 
publishers, journal editors, program committees of conferences, 
and reviewers are responsible for ensuring the quality of publica-

tions. We show that quality is below what one may expect. How-

ever, we also acknowledge that it is always easy to comment when 
looking back. As a field evolves, prior errors become evidently vis-

ible.

Overall, based on our analysis using the quality indicators proposed 
in Section 3, we report that most of the models used for energy and 
environmental footprint estimation suffer many known flaws that limit 
their reliability. We argue that more empirical data has to be collected 
before these estimates can be considered accurate and scientifically rig-

orous for policy decisions.

Many of the reviewed studies suffer from trivial issues such as un-

substantiated claims or assumptions. This is uncharacteristic of a mature 
scientific domain; however, as this field is in the early stage, these 
measures are likely to see further refinement both in terms of their 
reliability and accuracy. We identify three potential avenues for im-

provement in the state of this field: standardization, quality assessment, 
and provision for more data collection.

1. Standardization: Before we can start meaningfully discussing how 
to improve the quality of these models, the field must agree on the 
scope and definitions of these models. For instance, a model de-

signed to estimate the electricity consumption of a PoW-based cryp-

tocurrency should describe all the fundamental building blocks, 
such as hardware efficiency, PUE value, and cost of electricity, 
in a transparent manner. The measurements generated by these 
models should also include a clear timestamp. The data used by 
these models should also adhere to the nomenclature. We suggest 
that the field begins with adopting the nomenclature used by the 
Cambridge dataset at http://sha256 .cbeci .org/. This standardiza-

tion not only helps in comparing the results of different models 
but also transparently understands the assumptions made by each 
of these models. It may also promote more collaboration by build-

ing upon existing open datasets rather than rebuilding the same 
datasets again.

2. Quality assessment: This study proposes an initial quality assess-

ment framework in the form of numerous quality indicators. How-

ever, we believe this to be only a starting iteration of the frame-

work. We have attempted to logically split the framework based 
on different research methodologies. This framework can easily be 
extended to account for different consensus mechanisms. We must 
be able to transparently discuss the robustness of a given model to 
make policy choices based on the outcome.

One of the main recommendations of our model is the use of sen-

sitivity analysis and confidence intervals to communicate results. 
This assists in ensuring that the results are better contextualized. 
Another important outcome of our survey is the development of a 
novel code of practice. We believe that a document structure that 
adheres to the guidelines proposed in Section 5.1 would allow for 
an easy evaluation of the scientific quality of the report.

3. Provision for more data collection: One of the prime issues asso-

ciated with models for electricity and environmental footprint in 
this domain is the lack of real-world data regarding the machines 
in use or their geographic location. We believe that this problem 
needs to be addressed by both private and public stakeholders in 
this ecosystem. Private mining pool operators should attempt to 
document and validate their electricity consumption and use of re-

newable claims. Public bodies should attempt to design regulatory 
frameworks to either incentivize or impose reporting of electricity 
use. This can assist in validating the models that we already have 
in place while also promoting more rigorous reporting.

6.2. Severity of issues

While a large number of studies suffer identified issues, some of 
the studies, such as Mora et al. [12] made more fundamental and con-

sequential errors in their model construction. Thus, it is important to 
note that not all the identified issues influence the reliability of the 
model equally. For instance, studies relying on energy per transaction 
measure are likely to extrapolate data a lot more than a study with a 
non-granular PUE value.

We strongly recommend that the reliability of these models should 
be looked at more granularly and that each identified issue should be 
independently assessed for its impact on reliability rather than assuming 
equal influence.

7. Conclusion

In this paper, we conduct a systematic literature review to provide 
a summary of research done on the energy and environmental footprint 
of blockchain-based technologies by both academic and non-academic 
sources. We contextualize our findings by analyzing the robustness of 
these studies, pointing out common issues while also highlighting po-

tential avenues of either fixing the issues or presenting the results better 
to account for the limitations.

http://sha256.cbeci.org/
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Given the significant growth of blockchain technologies in recent 
years and their potential impact on the environment, we believe this 
study to be pivotal in encouraging a constructive discussion on the re-

liability of the models used to measure and in some cases offset the 
carbon emissions generated through the use of blockchain. This refined 
understanding of the common issues faced by studies focusing on energy 
and environmental footprints allows us to generate a set of recommen-

dations in the form of a code of practices that may improve the overall 
quality of these models.

7.1. Contribution

We systematically review the literature from both academic and 
non-academic sources. This allows us to build a large corpus of mod-

els used to measure, estimate or predict the energy, or environmental 
impact of blockchain technologies. We not only documented these mod-

els but also attempted to traceably discuss the potential limitations of 
these models. We do this by using the quality indicators from cognizant 
fields of social energy sciences, information systems, and computer sci-

ence.

Our analysis suggests that a majority of these studies lack the sci-

entific rigor expected from a mature scientific field. We make specific 
suggestions regarding the reuse of existing theories and datasets to pro-

mote more cohesive research and hopefully, iteratively improve these 
models. To measure or contextualize the quality of the research, we 
adopt and refine the code of practices from Ref. [16].

Through our review, we have documented the substantial progress 
made by blockchain energy researchers in obtaining novel datasets and 
constructing useful models under the constraints of a decentralized 
system. We strongly support and encourage the development of these 
models. We believe this article provides an enumerated list of common 
flaws to avoid while working on the blockchain energy model.

For quantitative energy modeling, we provide a list of common is-
sues and identify instances from popular academic and non-academic 
sources that suffer these limitations. Our intention here is to highlight 
that even the most popular studies might be limited in terms of their 
validity. To this end, we present an overview of some of the issues 
present in both the Cambridge and Digiconimist models. In addition to 
the issues of quantitative energy modeling, we also highlight the com-

mon problems with other research methodologies and how they can 
be avoided through adherence to best practices from cognizant disci-

plines.

The main intention of our work is to promote rigor in blockchain en-

ergy sciences. To this end, we develop a set of guidelines in the form of a 
code of practices that can be used by both academic and non-academic 
researchers. We believe adherence to this code of practices will not 
only ensure that common issues and pitfalls are avoided but also help 
improve the quality of the model and the accompanying report. Our 
code of practices is also grounded in the needs of the field specifically 
in terms of building on existing knowledge and better contextualizing 
results for policy decisions.

To conclude, we strongly believe that this work paves the way for a 
constructive discussion on the topic of energy and environmental foot-

print by advocating for a common vocabulary while providing tools to 
compare different models and understand their reliability. We also be-

lieve that the code of practice will promote traceability, building upon 
existing work and better contextualizing the results. We note that the 
quality framework developed in this work is an initial framework that 
is intended to be built upon and iteratively refined as the knowledge 
around this topic improves.

7.2. Threats to validity

Our analysis despite adherence to the best practices from the litera-

ture might suffer from limitations. The primary limitation is the nature 

of the search for both non-academic and academic literature. The terms 
used for the search were intentionally kept vague to ensure high cov-

erage; however, they returned a large number of both relevant and 
irrelevant articles that we then filtered through the title and abstract fil-

tration process. This process might have omitted some relevant articles, 
as ensuring high reliability of filtration is difficult in a large dataset. To 
limit this potential issue, we perform cross-validation and obtain a reli-

able result, suggesting that the filtration process is reliable and may be 
replicated independently.

The selection of non-academic literature was particularly challeng-

ing due to the vastness of the cryptocurrency domain. We restrict our 
focus to a set of the top 200 cryptocurrencies and use keywords similar 
to the academic literature. However, this focus on a subset of cryptocur-

rencies might have led to the omission of some other methodologies. 
To account for this limitation, we also include all the signatories and 
supporters of the crypto climate accord. It is also worth noting that de-

spite our inclusion of non-academic studies, we may have omitted some 
conflicts of interest. It is particularly difficult to both extract and assess 
potential conflicts of interest in non-academic articles. We acknowledge 
this as a potential limitation of our work and wish to account for this in 
potential future work.

Another potential source of limitation to our work is the selection 
of quality indicators from the work of Sovacool et al. [16]. Due to the 
fundamentally different nature of crypto climate research, not all the 
recommendations from Sovacool et al. [16] apply to all the models we 
reviewed. To account for this, we combine these guidelines with the 
work of Lei et al. [8]. We additionally propose our quality assessment 
framework as an initial step in the development of a more robust qual-

ity assessment framework. We leave it up to future work to iteratively 
refine and improve this model.

7.3. Future work

The work presented in this article provides an initial set of quality 
indicators that could benefit from refinement specifically for non-PoW-

type cryptocurrencies. As a next step, we wish to develop a number of 
flavors of these quality indicators for proof-of-stake and other popular 
consensus mechanisms.

We also intend to make our code of practice more accessible to 
researchers and practitioners by developing a web application that pro-

vides a checklist and points out common flaws and potential avenues 
for fixing them. To this end, we have already designed a primitive ver-

sion of these guidelines24; however, we intend to refine it further to 
improve user experience.

One of the intentions of this work is to allow researchers to re-

visit their existing models and refine them to avoid any of the issues 
pointed out in this work. To this end, we wish to refine the model 
developed and used by Vranken [26] while adhering to our code of 
practice.
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