6 Censorship attacks

Censorship attacks can happen in a number of ways. We are going to explore what por-
tion of the hashrate is necessary to perform an attack and how that influences the fee
that must be paid in order to overcome the incentives against including the transaction
on the blockchain.

The least effective way for a pool or collection of pools to censor is to simply to
decline to process a transaction. Even if the pool has a majority of the hashrate, anything
less than 100 % hashrate will allow the transaction on the chain. This is why Bitcoin is
often described as censorship-resistant. Effective censorship requires a more aggressive
strategy. To effectively censor, the censoring parties should commit to supplanting any
blocks that process forbidden transactions. If the censoring parties have more than 51 %
they should be able to accomplish this in the long run, with probabilities as described
in Chapter 4. If the censoring pool has less than 51 % of the hashrate, they should not
expect to be able to overwhelm the rest of the hashrate on a consistent basis, at least by
brute force. Even if they accomplish this feat once, or twice, the transaction will stay in
the mempool and should eventually be confirmed.

The most effective approach for the censoring party is to announce their intention
to attempt to supplant any blocks containing undesirable transactions and then allow
incentives to influence other rational miners. At this point, presuming the censors can
be taken seriously with this commitment, this promise will be taken into consideration
by other miners. Before getting into the details, we offer a quick example. Suppose that
a pool with 25% of the hashrate announces that they will attempt to uncle any blocks
which contain transactions which spend a certain output. Assume this threat is received
as credible by other miners on the network. Now suppose a transaction appears in the
mempool. The non-censoring miners have two options: leave it alone or attempt to mine
it. If the transaction fee is small or non-existent, the miners have little or nothing to gain
by including the transaction when attempting to construct a block. On the other hand, if
they do include the transaction in their next block, there will be a risk: There is at least a
1/16 chance that the censoring pool will immediately write two blocks on top of the latest
compliant block, before anyone appends to the offending block. So the expected value
for including such a transaction in a block is at least 1/16 of a block reward less than
leaving the transaction alone. In order to compensate for this the transaction should
include a fee of at least 1/16 of a block reward or expect that miners are either ignorant
of or resistant to the censorial pool’s threats to supplant the block.

In practice, an entity with a bit of cash on hand who wanted to censor transactions
may try the approach of committing to rewarding miners who supplant offending
blocks. It is easy to choose the reward large enough so that rational miners will be
induced to pursue a reorg whenever an offending transaction is included in a block.
By backwards induction, rational miners will simply choose not to include that trans-
action, unless the fees are large enough to merit the risk. Of course the censor is likely
to be a party who can simply bid higher, to the point that the fee required to spend
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the transaction may be more than the unspent output. Another practical way to censor
transactions is to have major financial institutions agree that the outputs from certain
UTXOs are tainted. If such institutions refuse to treat these UTXOs and their progeny as
valid Bitcoin, the effect could cascade throughout the ecosystem: Parties are unlikely
to accept an output if they do not believe they will be able to trade it for something of
value.

We model a case where a subset of miners tries to practice censorship by making a
commitment to mining only on certain chaintips. This can happen in practice if a group
of mining corporations resides in a jurisdiction that can exercise control over the min-
ers, in which case the authority can declare it illegal to participate in the settlement of
certain transactions. In this case “settlement” could mean mining a chaintip in which
such transactions are less than three blocks deep. We assume that the miners will con-
tinue to mine the old chain, instead of turning off machines (it is possible that a miner
who wishes to remain law-abiding without actively participating in censorship could
just refuse to participate in reorgs, satisfying authorities by idling machines until the
transactions are considered settled).

We consider three sets of mining pools. The censorial (C) mining pool will have
hashrate p and is not interested in minimizing costs. They will follow a fixed predeter-
mined strategy, with the primary objective of keeping offending transactions off of the
blockchain. There may also be a non-compliant (NC) pool, which has hashrate g, which
is not interested in censorship for ideological or technical reasons and hence will al-
ways follow the longest-chain rule and will mine any transactions. Finally there will be
arational (R) set of pools. These may have different sizes €, +- - - + &, = r and are consid-
ered economic free agents: They will join the compliant pool when more profitable and
proceed with non-compliant mining when profitable.

The NC pool will be assumed to not use any strategy: simply mine the longest chain.
The C pool will declare their strategy at the beginning, which will be simple, and other
players in the game will take this to be credible. For example, the C pool can declare that
they will attempt to supplant all non-compliant blocks that are no more than k blocks
deep, but will not pursue reorgs beyond a certain depth. It is then left to the remaining
rational pools to determine their respective strategies.

If the C pool owns 51 %, they control the network. They can uncle any block, even-
tually, as is their prerogative. If the C pool has less than 50 % it makes sense to use a
loss-cutting strategy. There is no sense pursuing an increasingly unlikely attempt to cen-
sor a specific transaction indefinitely.

6.1 Working example: two rational pools

Suppose we have only two rational pools of sizes &;, €, so that

p+q+&+&=1
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We assume that p is less than 50 %. Suppose that C declares that their strategy is to at-
tempt to uncle any offending blocks that are less than k blocks deep. If k blocks behind,
they will drop the fight and look for a more recent forking point or mine the chain-
tip with compliant transactions. With this declared strategy we will attempt to begin to
build a payoff table for a few possible basic strategies for the two rational pools. For sim-
plicity, assume that the distasteful transactions are happening somewhat infrequently,
so that we do not expect to see a series of consecutive blocks containing offending trans-
actions that may demand a more sophisticated censoring strategy.

The game starts when the discountenanced output holder attempts to send a trans-
action. The unspent output (fee) will be given by A in units of the block reward. We will
assume that NC has positive hashrate q. This assumption means that eventually the NC
will win k consecutive blocks and the transaction will be accepted. In practice, depend-
ing on the strategies of the rational pools and the size of NC, this terminal event may
occur within an hour, or it may take centuries. However, it is a convenient mathemati-
cal assumption as we can then model the game as a game that terminates in finite time
with probability 1.

Remark 6.1. As a side note, we point out that there is a huge mathematical difference
between the words “finite” and “bounded.” Unfortunately these words are often used in-
terchangeably by non-mathematicians. For example, saying the supply of a currency is
always finite is usually a true statement, whereas saying the supply is “bounded” (as
specified in Bitcoin’s whitepaper) is a completely different statement. “Bounded” re-
quires a number that provides the upper bound. Similarly, saying that a game termi-
nates in finite time with probability 1 can be true, even if the expectation of the time it
takes is infinite. The payoff in any play of the St. Petersburg paradox game (Exercise 2.3)
is finite, but not bounded.

From a rational pool’s perspective, there are two questions to be asked:

1.  What is the expected number of block rewards that a rational pool would waste in
fighting the censors?

2. What is the probability that they receive the extra reward from the fee?

Multiplying the answer to the latter by A and subtracting the former serves as a useful
metric in comparing different strategies.

We can think of the game as occurring in a series of rounds. Each round begins
when the offending transaction is mined and terminates in one of two ways. The round
may terminate with the compliant chain pulling a full block ahead, in which case the
game continues. The NC pool attempts to mine the offending transaction on the chaintip,
instead of making a come-from-behind attempt. The next round of the game starts when
the transaction is again mined on the chaintip. The round may also terminate with the
NC chain pulling ahead k blocks. In this case, the round terminates, and so does the
game. So to compute the expected outcome for a given pool, we divide the analysis into
these two cases.
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In each of the scenarios determined by the pools’ strategies, there will be a function
w(x), which must be computed, that determines the probability that the censorial pool
will win the round. When the transaction is mined and the round begins, the probability
that the game will continue beyond that round is w(1). The probability that the game
terminates is 1 — w(1). We can compute the expected value that a pool will have won in
the latter case. In the former case we will need to set up some recursion relationships

to complete the computation.

In particular, after fixing a strategy regime and a Pool i, define a random variable

W; € {0,1} via

W; = 1if Pool i claims the fee A when the game ends,

W; := 0 otherwise
and a random variable L; € Z,,
L; := blocks mined by Pool i that have become stale when the game ends.
Then we define the random variable (dropping subscripts when clear)
f=AW-L.
The goal then is to compute
E[f] = AE[W] - E[L].

Now

E[f] = { (1-w()E[f | Closes round 1] }
B +w()E[f | C wins round 1] ’

and then

E[f | Cwins round 1] = (1 - w(1))E[f | C loses round 2]
+w()E[f | Cwins round 2].

Now define the following quantity:

7 := E[blocks lost by Pool i in any given round | C wins that same round],

6.1

(6.2)

which is a constant that does not depend on the particular round. Noting that looking

forward, the game looks the same at the start of every round, we can write

E[f | Cwinsround 1] = E[f] - 7.

(6.3)
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We also use notation
o = E[f | Closes round 1]
and combine (6.1) with (6.3) to get
E[f] = (1-w(@))o + wQ)(E[f] - 7),

which reduces to

w(1)
1-w@)

E[fl=0-7 (6.4)
In the following sections, our goal will be to compute the values o, 7 and the function
w(Xx).

6.1.1 Consideration for this choice of function

One difficulty in modeling a game like this is coming up with an appropriate quantity
to measure. We have made the decision to essentially model the game as a one-shot
affair. The miners in question will mine until the game is over and then return to mine
as they had been before the game started. In reality, this may or may not be optimal. In
particular, we are not considering situations in which new offending transactions will
pop up while a previous transaction is being fought over.

The goal of the computations will be to demonstrate that, given a fee and a hash-
ing power of the censorial pool, the rational pools can compare different strategies. The
results will be meaningful with the assumption that the game will be ending in a rea-
sonably short period of time (this is not an unreasonable assumption).

For this reason, the values that appear in forthcoming payoff tables involve only the
expected gain or loss from what would be mined in that time period, and do not consider
how much time is taken to complete the game. When discussing incentives for mining
games, especially those that may be repeated, the revenue ratio (expected revenue per
expected time, cf. [21, §3]) can be more instructive, but the computation can become
more intricate.

6.1.2 There are many strategies

We focus on strategies that are easier to describe and implement.

1.  (Non-compliant) First, there is the non-compliant-at-all-times strategy. The pool sim-
ply ignores the censors and includes the transaction, and always mines the longest
chain using the first-seen rule.
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2. (Mildly compliant) A second strategy would be to attempt to build on the censoring
fork when the difference is zero blocks but not when it is one block deep. In par-
ticular, the pool would never mine the offending transaction, always leaving it be
while in the mempool, and will break ties for the censors.

3. (More compliant) A third strategy would be to not only exclude the transaction, but
also attempt to build on the censoring fork when the difference is zero or one block
and go back to the longest chain if two blocks deep.

4. (Neutral/selective) The pool may decide to abstain from mining when the difference
is one block deep, not wanting to risk the event this block would become an uncle.
If the energy cost is significant, these sorts of strategies may come into play.

There are many more variations. Computing outcomes with each of these would give us
a 4 x4 payoff table with 16 outcomes. Even with symmetries, this would already lead to a
somewhat lengthy computation, so we restrict ourselves to the first two strategies. This
will result in a 2 x 2 payoff table with essentially four computations, due to symmetries.
Our attainable goal is to populate the following table:

Pool 2 strategy Non-compliant | Mildly compliant
Pool 1 strategy
Non-compliant ? ?
Mildly compliant ? ?

6.1.3 Case 1: Pool 1 and Pool 2 are both non-compliant

We consider the game from the perspective of Pool 1; the payoff to Pool 2 computation
would be identical. From Pool 1’s perspective, there is no difference between Pool 2 and
NG, as both employ the same behavior.

Our goal is to compute o and 7 from the perspective of Pool 1, given this strategy
regime. Each round of the game has two state variables. The first state variable, i, will
refer to how far behind the compliant chain is. Then i = -1 denotes the fact that the
compliant chain has won the round, while i = 0 means the NC chain has been equalized
by the compliant chain, so the first-seen rule favors the NC chain. At block k, C will
concede the transaction. The second state variable, s, will refer to the number of block
rewards Pool 1 has contributed to the NC chain.

A third variable, which is determined when the game begins and does not change
after the first block is mined, will be the amount that Pool 1 has won by mining the
offending transaction, taking values in {0, A} (either they mined the block or some other
NC mined the block). This does not need to be dragged through computations along the
game, but is necessary information when the game ends in favor of the NC chain.

While the game begins when the objectionable transaction is posted, the round be-
gins (as with all subsequent rounds) when the transaction is mined and the longest chain
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becomes non-compliant. The block will have been mined by Pool 1, Pool 2, or NC. With
probability &;/(1 — p) the round begins in state (1,1) and with 1 — &/(1 — p) probability
the game begins in state (1, 0). We consider these cases to begin computing the expected
value of L;:

E[L,] = 1“3_—1p]E[L1 | (LD)] + (1 - i—ll))IE[Ll | (1,0)]. 6.5)

Using conditional expectations,

PE[L; | (x - 1,5)]
E[L; | (x,9)] = +(q+&)E[L | (x+1,9)] . (6.6)
+&E[L | x+1,5+1)]

This incorporates the three possibilities; the next block is won by C, NC/Pool 2, or Pool 1.
We use a fact that can be concluded from an argument similar to the one leading to
Claim 5.1:

E[L; | (x,s+1)] = E[L; | (x,8)] + w(x). (6.7)
Letting
e;(x) = E[L | (x,0)],
we have from (6.6) and (6.7) withs = 0

e;(X) =pe;(x - 1) + (q + &)e;(x + 1) + g(e;(x + 1) + w(x + 1))
=pe;(x -1)+ (1 -ple(x +1)+gw(x +1).

Because for the entirety of the round, C is playing catch-up, the probability that C wins
w can be computed exactly as in §5.1.3:

X+l
w(x) = c&%) + €y,
where ¢y, ¢, are determined by (5.13). So we have the equation
x+1
e (X) — pey(x — 1) — (1 - pley(x +1) = £1<cl<%> 4 cz>, 6.8)
which is quite similar to equation (5.16).

As before,

%)
1-2p

Y1=-& X,
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_&OX (P
y2‘1—2p<1—p>

x+1

will solve the equations

YX) -pyx -1 - A -pyx +1) = &y,

x+1

00 = pyte=1) - (1= plyer+ 1) = i 7
So the general solution is
X x+1

. p 5 %) §OX( D
y(x)—c1<—1_p) + Gy 811—2px+1—2p<1—p> . (6.9

We can solve this with boundary conditions

e(-1) =0,
el(k) = 0

Again recall why the zero boundary conditions are there: Because we are solving for
s = 0 in the second state variable, there will be nothing gained nor lost by the mining

pool.
Solving,
- &c
E‘l<—1_ > +O e 22p_1—121p_
p k c ec ) k+1
- 2 101 _
Cl<1—p> tema K Ty (1—p> 0
or

As before, we get

& m g 1 )( 1 —1><c1>
= . Nl
< Gy > 1-mkt11-2p ( -mk m™ —km* k Cy (6.10)

With these values evaluated we have the solution:

c
X + & ——xm**%,

1-2p

C
e(X) = &m* + &) — & —2
1 1 2 1(1—2p)

Now we are interested in the values
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Euuaﬁn=qm:Qm+q—q—ﬁL—+qT%?m{

(1-2p) p
E[L; | (1LD)] = e;(1) + w(1). (6.11)

We have determined that the expected number of blocks that are lost in a given round,
recalling (6.5), is

I = 1 (e +w) + (1 2 ey

=qm+fimn

We are not done yet — we wanted to know the expected number of blocks that are lost,
given the fact that C won the round. To compute this use

E[L;] = w()E[L, | Cwins] + (1- w(1))E[L, | Closes].
Because
E[L, | Closes] =0,

we can determine that

. E[L
E[L, | C wins] = W[(ll)]
e(l) g
= — + ——. 12
WD) + T (6.12)
Thus we determine

_aq) g

= _W(l) + -3 p' (6.13)

Now o is easier; it is the expected share of the additional reward. This is easily seen to
be

__ &
O'—l_p

as once the round starts the odds of winning do not depend on which pool mined the
offending block. So the payoff to Pool 1is

& A_(qa)+ & ) w(1)

1-p wl) 1-p/1-w()
g B w(l) B e(1)
=50 ) e ©19

where e;(1) is determined by (6.11) and (6.10).
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Summary

To summarize:

1. Solve ¢, ¢, via (5.13).

Solve ¢4, ¢, via (6.10).

Solve e;(1) using (6.11).

Note that w(1) = ¢;m + ¢,.

Harvest the resultin (6.14). This is E[AW; —L,] in the (non-compliant, non-compliant)
strategy regime.

SER A

The computation for Pool 2 is identical. One only needs to modify (3) to incorporate the
different value &,.

6.1.4 Case 2: Pool 1is non-compliant and Pool 2 is mildly compliant

We will begin by attempting to compute w(x). However, there is a wrinkle that prohibits
us from continuing to use exactly the same calculus leading up to (5.13). These finite
difference equations to be solved are “broken” by the fact that the strategy and transition
probabilities change at intermediate states. So we need to perform some slightly more
involved computations in order to solve the problem.

6.1.4.1 Broken difference equations
We begin with the most basic computation, the probability w(x) that C wins the round,
given we are at state x. The equations are different from previously. In particular, letting

P =p+e,
we have
w(0) = p*w(=1) + (1 - p*)w(1). (6.15)

This encodes the fact that when i = 0, Pool 2’s hashrate of ¢, is joining the censors (hence
p* and not p). However, for integers x > 1, Pool 2 returns to mine on the true chaintip,
and we have

wXx) =pwkx -1)+ (1-pwx +1). (6.16)

We solve the broken difference equation using somewhat of a cheat: Look at equa-
tion (6.16). This holds for x > 0 and only excludes the point 0, so we may think of (6.15)
as a single relation that needs to be satisfied and solve the problem on [0, k] considering
this single relation and one degree of flexibility built into the boundary value problem.
Note that this works when there is only one relation in the set of relations (6.15).
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To begin, because w(-1) = 1, from (6.15) we have
w(0) =p* + (1-p*)w(D). (6.17)
Now if we solve the boundary value problem for equation (6.16) with

w(0) = b,
w(k) =0

(for b to be determined), then necessarily from (6.17) we see that

*

b-p
1-p*

w(l) =

(we have skipped the step of solving the first equation (6.15) as an equation; knowing
w(-1) = 1, specifying w(0) = b, we know what w(1) must be). So now, we may solve
equation (6.16) with three values,

w(0) = b,
_b-p*

w(l) = =

w(k) = 0.

This extra parameter b allows us room to put in the third condition, and we expect to
get a unique solution.

Equation (6.16) is the same equation we have seen before, with general solution
given by

w(x) = ¢m* + ¢,.

Thus the boundary conditions above become

Cl + Cz = b,
b _ *
Clm + CZ = p* >
1-p
k
cm” +¢, =0.
As a matrix,
1 1 c b
m 1 L b*_P* . (6.18)
X C (1-p*)
m° 1 0
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Now we augment the matrix in order to solve the problem completely using linear alge-
bra. Using that

b 1 0
b-p” 1 -
2 Rl W= LA =
0 0 0
we see that (6.18) is equivalent to
1 1 c 1 0
1 1 _ -p"
m 1 ( c ) - 1p b= T
mk 1 2 0 0
or
1 1 -1 ¢ 0
,1 _ ,p*
mo1 o @ |={ >
mk 1 0 b 0

Now, in order to solve for ¢; and ¢, (and b incidentally) we need to invert this 3x3 matrix,

-1

o 1 1 - 0
o |=| m 1 oF = | (6.19)
b mk 1 0 0

Now that we have ¢; and c¢,, we can compute our new function w(x), now given as
a multi-part function:

w(-1) =1,

w(x) = cm* +¢, forx>0.

Remark 6.2. If we had cutoff at, say, i = 2, the computation would have been more com-
plicated. Another method would be to solve both equations, but with “buckled” bound-
ary conditions that overlap at two points and a free parameter (such a b above) specified
for one of the boundary conditions.

6.1.4.2 Expected value for Pool 1
This same strategy works to compute expected values. To begin, we have

4 gL @]+

E[L, | (1,0)]. (6.20)
+ & q+&

]E[Ll] = q

But then, using e, (x, s) for short-hand we have a single relation describing the transitions
at state (0, s):
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e,(0,5) = p*e;(-1,8) + ge,(1, s + 1) + ge(1, s).

Asin (6.7),
(1, s+1) =e(1,8) +w(), (6.21)
s0
,(0,5) = p*e;(-1,8) + &(e; (L, 8) + w(D) + qey (1, 5),
or

e1(0,8) —p*e;(-1,8) — (1-p*)ei(1,s) = gw(d). (6.22)

As above when we solved the broken equation for w(x), this relation will be plugged in
directly to create a three-parameter boundary value problem when solving for e;(x).
For x > 1,

e(x,s) =pe(x—1,8) + ge;(x+1,s+1) +(q + &)ey(x +1,9),
which gives a familiar equation:
e(x,8)—e(x-1,8) -(1-pex+1s) =gwkx+1). (6.23)

The general strategy for solving this type of broken system of non-homogeneous equa-
tions is similar to the strategy for solving homogeneous equations. We will set up the
general solution for (6.23) and then use (6.22) to set up a third condition.

Solving (6.8) as before to get the general solution (6.9),

X x+1

- p _ ¢y gax( p
- e — , 24
y(x) Cl(l p) + 0y 811—2px+1—2p<1—p> (6.24)

where ¢y, ¢, are obtained by (6.19). Set boundary conditions

€,(0) = by,
e(k)=0
and then bring in (6.22):
b, - w(1
e (1) = 11—1() (6.25)
-D

We are trying to solve for ¢;, ¢,, so we plug the values for e, in the three previous expres-
sions to get
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61 + &2 = bl’
. . c &C b, - w1
Em+ &y — £ —2 162 bhi—& (),
1- 2p 1-2p 1-p*
PR S ) &K ki
omt +¢y—¢€ k+ mt = o,
! 27 2 12
which tidies up into matrix notation as
— & 0
vl } “ ) o &e 2
mo1 - & |=| T Tt T
k b &0k ke
m 1 0 1 811 Zpk 1;
0 0 0 1
-w(1) m 1
=& 1-p* T12p 12p ¢ |. (6.26)
0 -k gpmkt k. o

1-2p

We can solve for the coefficients ¢;, ¢, using linear algebra. Once we have done this, we
plug back into (6.20) and (6.21) and compute

E[L,] = 818 (e,(1) + w(D) + qg e(1)
1 1

= el (1) +

).

As before (equations (6.12), (6.13)), we can then determine that

91(1) &

w(l) q+ée’
o= il A

q+é&

Once the round starts, the odds of winning do not depend on which pool mined the
offending block. So the payoff to Pool 1is

& A—<31(1)+ & ) w(l)

q+& wl) q+¢&/1-w()
g w(l) e (1)
_q+£1<x_1_w(1)>_1_w(1). 627)

This gives the expected value for Pool 1 in the second case.

Summary
1. Solve for w, that is, find coefficients c;, ¢, using (6.19).
2. Solve for ¢y, ¢y, by using (6.26) and w(1) = ¢ym + ¢y.
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3. Solve for e;(1) using (6.25).
4. Harvest E[AW; — L,] using (6.27).

We note that because we are using b; to solve for the value e;(1), we end up not needing
the information given by ¢; and ¢, in this particular computation.

6.1.4.3 Expected value for Pool 2
We have already computed w(x) in this strategy regime. In setting up the computation
of the outcome for Pool 2, we now let the second state variable denote the number of
blocks that Pool 2 has mined. Note that because Pool 2 is mining with the censorial pool
only when the chains are of equal length, Pool 2 has no risk of censorial blocks being
lost. The risk to Pool 2 is realized only if Pool 2 adds to an NC chain that is already one
block ahead and this chain ends up losing (the given strategy allows for the unlikely but
still possible event that the chain will mine a block on the NC chain and then end up
breaking a tie in favor of C, making an uncle of their own block, so the strategy would
probably be tweaked in practice).

Because the pool is not interested in mining the objectionable transaction itself, we
start with

E[L,] = E[L, | (1,0)] (6.28)

as the initial state necessarily involves either Pool 1 or NC having just mined the block.
Now

E[Ly | (0,8)] = (p + &)E[Ly | (-1,8)] + 1 - p - &)E[Ly | (1,8)],
and for x > 1,
E[Ly | (x,8)] = pE[Ly | (x=1,8)]+(1-p-&)E[Ly | (x+1,5)]+&E[Ly | (x+1,5+1)]. (6.29)
Also, as before,
E[L, | (X, +1)] = E[L, | (x,5)] + w(x).
Using e,(x) = E[L, | (x, 0)], (6.29) becomes
ey (x) —pe,(x—1) - (1-pley(x +1) = &w(x +1) for x > 0.

The function w(x) has been computed with coefficients determined by (6.19). The anal-
ysis to determine e, (x) is very similar to the analysis line following (6.24). With general
solution

X x+1

_(_D 5 G EGX (P
y(x)_cl(l_p> + 0y 821—2px+1—2p<1—p> , (6.30)
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we solve for boundary conditions

92(0) = bz,
e k) =0 (6.31)

and the additional condition with free parameter b,

by

o= (6.32)
This follows from (6.31) and
e(-1)=0
and
e,(0) - p e, (-1) - (1-p*)ey,(1) = 0, (6.33)

which differs from (6.22) because there is no w(1) term on the right-hand side.
We are trying to solve for ¢y, ¢,, so we plug the boundary values in and convert to a
matrix:

1 1 - & 0
1 i g, -2 _ £0 2
m 1 i Gy = 21-2p ~ 1-2p
k k. k+l
mt 1 0 b, 8215‘_§pk_&1‘2—621pm+
& 0 0 c
=2 -m* 1 < ! > (6.34)
l_zp _kmk+1 k G

Inverting the first matrix, we can solve for the coefficients ¢;, ¢,, and b,. Once we have
done this, we plug back into

by

E[L,] = e,(1) = —. (6.35)
2 2 1-p
As before we can then determine that
_ e(1)
w()’
g=0.
So the total expectation for Pool 2 is
&l __ by (6.36)

C1-w) A-w@)A-p*)
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Summary

1. Solve for w, that is, find coefficients ¢y, ¢, using (6.19).
2. Solve for ¢, ¢y, b, using (6.34) and w(1) = ¢;m + ¢;.

3. Solve for e,(1) using (6.32).

4. Harvest E[AW, — L,] using (6.36).

6.1.5 Case 3: both pools are mildly compliant

This will be almost identical to the computation in §6.1.4.3. This time we take
P =p+e+e,.

Because neither pool is interested in mining the objectionable transaction itself, we
start with

E[L;] = E[L; | (1,0)]
as the initial state is that only NC has mined the block. Now we have
E[L; | (0,8)] = p"E[L; | (-1,8)] + (1 - p*)E[L; | (1, 5)]
forx = 0and
E[L; | (x,8)] =pE[L; | x-1,8)] + 1-p-&)E[L; | (x+1,8)] +&E[L; | (x +1,5 +1)]
for x > 1. Also, as before,
E[L; | (6, s+1)] =E[L; | (x,8)] + w(x),
leading to
e;(x)—pe;x-1)-1A-pex+1) =gwkx+1) forx>1

The function w(x) is determined from coefficients given by (6.19). Setting boundary con-
ditions

e;(0) = b;,

b
&) = ; _lp* : (6.37)
e (k) = 0

gives us a matrix equation:
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1 1 - ) 0 (1) .
m
mo1 - &G | =¢ 5 < 1 ) (6.38)
k b* K okil k 2
m 1 0 i —mm 2

Inverting the matrix, we can solve for the coefficients ¢;, ¢,. Once we have done this,

E[L;] = €;(1). (6.39)
So the total expectation for Pool 2 is
e;(1)
- 6.40
1-w@) ( )
by
= (6.41)

C(A-w)A-p)
Inspecting (6.38) we see that

*
by _ &

b; &

Summary

1. Solve for w, that is, find coefficients ¢y, ¢, using (6.19).

2. For either g or &,, solve for ¢;, ¢,, and b using (6.38) and w(1) = ¢;m + ¢,.
3. Solve for e;(1) using (6.37).

4. Harvest E[AW, — L,] using (6.40).

6.1.6 Analysis: low-fee regime

We begin by looking at situations in which the fee paid by the censored party is relatively
small. As of September 2022, the block reward is about $125,000. So if we assume the
censored party is willing to part with $125 in order to process the transaction, this will
amount to A = 0.001.

6.1.6.1 Normalized tables
We will use “normalized tables,” which divide the expectations of a pool by the hashrate
of that same pool. Re-normalization of any agent’s payoff will not affect strategic con-
siderations, because it does not change preferential ordering. Dominant strategies will
remain dominant, and so forth. Agents are attempting to maximize their own outcomes,
not their outcomes relative to someone else’s outcomes. Note that the hashing fraction
of a pool represents the expected block rewards per 10 minutes of mining. So the payoff
number given in the normalized table is given in units of expected payoff for 10 minutes
of mining for that given pool.

To illustrate this, we start with p = 0.2, &; = 0.15, & = 0.1. A censoring pool has 20 %
of hashing power, and two other rational pools with hashing powers of 15 % and 10 %
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are deciding between non-compliant and mildly compliant strategies. We start with the
unnormalized table with A = 0.001 and k = 4:

Non-compliant Mildly compliant
Non-compliant (—0.01944, -0.01296) (—0.03154, -0.00416)
Mildly compliant (-0.00719, -0.0256) (—0.00897,-0.00598)

Unnormalized payoff: p = 0.2,&; = 0.15,¢, = 0.1,4 = 0.001, k = 4.

For comparison, we also show the normalized payoff table:

Non-compliant Mildly compliant
Non-compliant (—0.1296,-0.1296) (-0.2103,-0.0416)
Mildly compliant (—0.0479, -0.256) (—0.0598, -0.0598)

Normalized payoff: p = 0.2,&; = 0.15, ¢, = 0.1,4 = 0.001,k = 4.

Observe this normalized table has some symmetry along the diagonal: It represents that
for a censor with censoring power 20 % and a transaction only offering 0.1 % of a block
reward as compensation, if both miners use a non-compliant strategy, they are each ex-
pected tolose about 13 % of their expected reward over 10 minutes of typical mining (the
game itself could last several blocks). By comparison, if both mining pools adopt a mildly
compliant strategy they expect to lose about 6 % of their expectations over 10 minutes.

We observe quite clearly the type of game this represents. Both players will play
their dominant strategy, and this will maximize the payoff to both players collectively.
This is called a deadlock game. A deadlock game is a game in which each player has
a clearly dominant strategy, and this is mutually beneficial. Typically such games are
less interesting, because players choose the strategy that benefits others represented in
the payoff table out of their own self-interest. Of course, the party whose interest is not
represented by this table is the party sending the transaction. However, once they have
sent the transaction and offered a fee, they have no agency in the mining game.

Both pools are motivated to use a mildly compliant strategy, at least when given the
choice between mildly compliant and non-compliant. The strategy space is quite large,
so we cannot conclude that this strategy is dominant among all possible strategies; it is
only dominant when compared against a non-compliant strategy. We should be careful
to put this into perspective offered by the normalized table; a total of 7 % of a pool’s block
reward is about 4 minutes of mining time.

Apool of size 20 % may be considered a large censoring pool, as it represents already
40 % of the way towards full control of the network. How effective is censorship with
lower combinations of hashpower? Reducing this censor’s power to 5 % shows a marked
difference:
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Non-compliant Mildly compliant
Non-compliant (—0.00219, —-0.00219) (—0.0096, -0.0005)
Mildly compliant (~0.00067,-0.0139) (—0.0010,-0.0010)

Normalized payoff: p = 0.05,&; = 0.15, &, = 0.1,4 = 0.001, k = 4.

Note that while the dynamics of the game are still essentially the same, for low hashrate
of the censor the motivations towards rational pools may be approaching indifference:
lose 0.2 % of your expected rewards for 10 minutes of mining versus lose 0.1%. This is
equivalent to a difference of about 6 seconds of mining.

What if we consider larger rational pools?

Non-compliant Mildly compliant
Non-compliant (=0.00219,-0.00219) (-0.00287, —0.000203)
Mildly compliant (-0.00182,-0.0691) (-0.00185,-0.00185)

Normalized payoff: p = 0.05,&; = 0.5, ¢, = 0.01,A = 0.001,k = 4.

Still, the incentive to comply is still rather small, approaching indifference.
Now what about when the C pool is larger, say 35 %? First we consider small-sized
rational pools:

Non-compliant Mildly compliant
Non-compliant (-1.204,-1.204) (—1.204,-0.423)
Mildly compliant (—0.423,-1.204) (—0.423,-0.423)

Normalized payoff: p = 0.35,&; = 0.0001, &, = 0.0001,A = 0.001, k = 4.

Perhaps not surprisingly, when the rational pools are small, the payoff tables are nearly
independent of the other pool’s behavior (they actually are different, but the difference
is smaller than the precision offered in the tables). For either pool there is a stronger
incentive (about 8 minutes of mining) to switch to a mildly compliant strategy.

For comparison:

Non-compliant Mildly compliant
Non-compliant (—1.204,-1.204) (-1.612,-0.5065)
Mildly compliant (-0.5795,-2.126) (-0.6438,-0.6438)

Normalized payoff: p = 0.35,¢7 = 0.2, ¢, = 0.1,4 = 0.001,k = 4.

Unsurprisingly, the incentive becomes more certain as the censorial pool approaches
50 %:
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Non-compliant Mildly compliant
Non-compliant (—5.565, —5.565) (-6.196,-2.321)
Mildly compliant (-2.321,-6.196) (-2.416,-2.416)

Normalized payoff: p = 0.47,&; = 0.05, &, = 0.05,4 = 0.001, k = 4.

Here a decision to resist the censors will result in an additional expected loss of over
20 minutes of mining. This may still seem small. When the censorial pool extends k
(which will make more sense as p — 0.5) there is a significant increase in expected loss:

Non-compliant Mildly compliant
Non-compliant (—29.224,-29.224) (-30.952,-21.571)
Mildly compliant (-21.571,-30.952) (—22.096,-22.096)

Normalized payoff: p = 0.47,¢; = 0.05, &, = 0.05,4 = 0.001,k = 10.

6.1.7 Higher-fee regime

The game changes if the party sending the offending transaction is willing to pay. In the
following, we take

A=0.16,

which represents one bitcoin when the block reward is 6.25 bitcoins.

Non-compliant Mildly compliant
Non-compliant (0.06912,0.06912) (0.04383, -0.03525)
Mildly compliant (-0.03525, 0.04383) (-0.04167,-0.04167)

Normalized payoff: p = 0.2,&; = 0.05, ¢, = 0.05,4 = 0.16,k = 4.

The tables have turned. The non-compliant strategy is now dominant, at least when p =
0.2. Increasing to p = 0.25, we have:

Non-compliant Mildly compliant
Non-compliant (-0.07725,-0.07725) (-0.1306, —0.09205)
Mildly compliant (-0.09205, —-0.1306) (-0.1052,-0.1052)

Normalized payoff: p = 0.25,&; = 0.05, ¢, = 0.05,4 = 0.16,k = 4.

Note that this game has no dominant strategies available, and it has two Nash equilibria,
similar to the stag hunt.
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6.1.8 Conclusion

In terms of pure game-theoretical considerations, it is possible for a pool with censorial
objectives to change the incentives landscape so that rational pools are motivated to
join the censors. However, from the tables above, if the pool controls a smaller portion,
say 5% of the hashrate, the motivations are likely to not come into play, unless there
are extremely low profit margins for the miners. A censorial pool cannot expect to win
all their battles, but the goal would be to cause enough losses over time so the rational
miners would join them in increasing numbers. The effect is to grind down the non-
compliant pools making non-compliant mining less profitable on average.

There are many other possible strategies that can be explored, and this becomes
much more interesting when profitability of the miners is taken into consideration. We
are not considering the possibility that non-compliant pools will punish those that join
compliant efforts by breaking consensus protocols to mine non-compliant blocks, even
ataloss.

Neither are we considering competition for blockspace. A computation (more favor-
able to the censors) would subtract from A the average fee obtainable for the blockspace,
according to the market rates. In 2022, this might not be a large difference, but as the
block reward decreases over the next 40 years, this modified computation may become
more significant.
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